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The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis
method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical
properties of many-dimensional potential-energy landscapes and the other is to give examples of applications
of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is
proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The
applicability of this approach is first confirmed by an illustrative example of a low-dimensional random
potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to
obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only
reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in
these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.
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I. INTRODUCTION

In recent years, the variety of structural, thermodynamic,
and dynamical phenomena observed in simulations and ex-
periments of a wide range of systems, such as polyatomic
clusters �1–4�, carbon nanostructures �5,6�, biomolecules
�7,8�, and glass-forming materials �9–20�, have been attrib-
uted to the complicated geometry of the underlying
potential-energy surfaces �PESs� �21,22�.

When a PES is a many-dimensional surface, it is hard to
visualize and analyze its global geometric character. For ana-
lyzing the global topography of PES, several graphical rep-
resentations have been developed. One of the most popular
methods is the disconnectivity graph �DG�, proposed by
Becker and Karplus in 1997 �7�. This graph depicts the dis-
connectivity, i.e., how basins split up into sub-basins as the
total energy of the system is lowered. By using this simple
and popular method, for example, structural transitions of
clusters and archetypal classification of PESs associated with
relaxation characteristics can be intuitively represented and
analyzed �22�.

The relation between the topographies of PESs and the
resulting dynamical properties, such as the folding dynamics
of biomolecules, are of much recent interest. Several graph
methods, such as the basin connectivity graph �7�, the tran-
sition matrix �7�, the monotonic sequence plot of minima �1�,
and the supergraph �23,24�, have been devised to extract the
qualitative features of kinetics. With these methods, kinetic
features, such as the criterion for the �anti�focusing character
of the PESs �1�, the competitions of fast pathways for rates
depending on the temperature �25�, and the formation of ki-
netic traps on PESs �1�, have been elucidated from topo-
graphical views. However, when they are applied to realistic
multidimensional systems, the graphs are too complex as
they are. Coarse-graining procedures have been used to ex-
tract some essential features �22�. However, understanding
the relation between the topography and dynamics is still

difficult due to the complexity resulting from the multidi-
mensionality. Therefore, a better topographic representation
is required for the understanding of global PES dynamics.

Recently, we have proposed an alternative graph method,
saddle connectivity graph �SCG�, which was called “connec-
tivity graph” for short in our previous paper �26�. The SCG is
a graph method for analyzing the dynamical properties on
PESs and is regarded as a generalization of the DG to in-
clude global dynamical information. With this graph method,
we can, for example, identify which pathways are dominant
for the transitions between potential minima. In Ref. �26�, we
devised a systematic method for finding the most dominant
transition pathways, a natural generalization of the so-called
minimum-energy paths �22�. This method is applicable when
the relaxation in each well is fast enough for the transitions
to be described by Rice-Ramsperger-Kassel-Marcus
�RRKM� rate theory �22�. We introduced a metric �cost or
distance� to characterize transition paths for passing from a
minimum to another neighboring minimum to identify the
most dominant pathways. The most dominant pathways of
interest are easily computed with the help of Dijkstra’s short-
est path algorithm �27� in the field of graph theory.

Of course, the problem of the huge number of local
minima, which is well known in the use of DGs, was also
found for the SCG. To evade this difficulty, a coarse-graining
method, based on the monotonic sequence method �1,28,29�,
was proposed for our SCG �26�. This method enables us not
only to reduce the complexity of the graphs, but also to ex-
tract the hierarchical structures.

This method is general, efficient, and applicable to a vast
variety of systems. The purpose of the paper is twofold: one
is to give a detailed description of the algorithms and the
other purpose is to advance, with the use of our graphic
approach, the understanding of the dynamical properties on
realistic multidimensional PESs. For this end, we analyze
13- and 38-atom Lennard-Jones �LJ� clusters, as paradig-
matic multidimensional model systems and compare how the
dominant pathways of the systems are altered by changing
their temperatures.

The organization of the paper is as follows. In Sec. II,
after introducing the DG, we describe the detailed algorithm*okushima@ike-dyn.ritsumei.ac.jp
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for generating SCGs. Section III introduces an illustrative
example, which we call a random funnel model �RFM�, and
illustrates how the SCG works for this model. In Sec. IV, we
describe a systematic procedure for finding pathways that
contribute most dominantly to the transport on PESs, with
the help of Dijkstra’s shortest path algorithm. Section V de-
scribes the coarse-graining method for SCGs, which has
been invented to treat realistic systems. In Sec. VI, with the
use of all these methods, we examine the dominant pathways
of many-atom Lennard-Jones clusters. Section VII provides
a summary of the paper and concluding remarks.

II. SADDLE CONNECTIVITY GRAPH

After reviewing the DG, we describe the procedure for
generating the SCG. The difference between disconnective
and nondisconnective saddles is introduced. A generalization
of SCG to include higher-order saddles, as well as first-order
ordinary saddles, is also presented.

A. Disconnectivity graph

Since the work by Becker and Karplus �7�, the DG has
been widely used to analyze the topography of PESs. A PES
is partitioned into the basins of the local minima �local
minima, LMs� corresponding to the stable configurations,
where all the eigenvalues of Hessian matrices are positive.
The boundaries of basins are characterized by the saddle
points �SPs�. Each SP has a negative eigenvalue of Hessian
matrix and the energy of the SP determines the connectivity
between the adjacent LMs.

The DG is a topological representation that represents
how a single metabasin is decomposed into basins by lower-
ing the total energy. From the DG, we can know the number
of energetically accessible metabasins and the LMs included
in each metabasin as a function of the total energy. These
indeed provide information to estimate the static thermody-
namic properties �7,22�. However, the DG does not provide
the information about pathways on the PES.

Figure 1�a� is a schematic example of one-dimensional
�1D� PES illustrating this point. From the corresponding DG
of Fig. 1�b�, we cannot see that L1 and L5 are neighbors
separated by only one SP. However, the undepicted informa-
tion of how many hops over SPs are necessary to travel from
one LM to another is, in principle, indispensable to evaluate
the dynamic properties on the PES.

B. Saddle connectivity graph

Now we describe the procedure of how to draw the SCG
from a given PES. For the graph, we have to construct the
database of LMs, SPs, and their saddle connectivity. The
LMs are easily located by geometry optimization schemes,
such as steepest-descent minimization, conjugate-gradient
method, limited memory Broyden-Fletcher-Goldfarb-Shanno
�L-BFGS� algorithm, and their hybrid algorithms �22�.

In contrast, finding SPs is in general more difficult and
many algorithms for this purpose have been developed.
These are classified into single-ended and double-ended
methods. Many single-ended schemes, such as the
eigenvector-following method, the hybrid eigenvector fol-
lowing with minimization �22,30�, and the dimer method
�31�, have been constructed for searching for a SP from a
given initial point on the PES. On the other hand, the double-
ended methods, such as nudged elastic band approach �32�,
enable us to calculate a reaction path that connects two arbi-
trary LMs, which may include intermediate minima and ad-
ditional transition states �22�.

The saddle connectivity is also necessary for the SCG
database. This is computed by energy minimizations starting
from two neighboring points in the unstable direction on
opposite sides of each SP by using, for example, steepest-
descent algorithm.

The resulting database obtained from the above procedure
is composed of three parts:

�1� the set of LMs �Li � i=1,2 , . . . ,M� of energies Ei
LM

=V�Li�, where M is the number of LMs and V is the
potential-energy function;

�2� the set of SPs �Si � i=1,2 , . . . ,N� of energies Ei
SP

=V�Si�, where N is the number of SPs; and
�3� the saddle connectivity of Sj �j=1,2 , . . . ,N�, which

connect Lj1
and Lj2

�j1 , j2=1 ,2 , . . . ,M�. This relation is rep-
resented by

g�Sj� = �j1, j2� �j1 � j2� , �1�

where Ei
LM and Ei

SP are, respectively, assumed to be sorted in
an increasing order, without loss of generality.

In the SCG, LMs are represented by half vertical lines
from Ei

LM to �. For representing the individual saddle con-
nectivity, Sj is indicated by a horizontal segment attached to
the vertical LM lines of g�Sj�. Then, the lines of LMs are
placed at even intervals in the order L��1� ,L��2� , . . . ,L��M�,
where permutation � is defined in order not to loose the
information of disconnectivity. We specify � by using a me-
tabasin analysis as follows:

�1� Initialize the ordered set of ordered sets, R, as

R = ˆ�1�,�2�, . . . ,�M�‰ .

�2� Repeat the following step from i=1 to N: if Si con-
nects two elements of R �say, Ra and Rb with a�b�, i.e.,

Ra � g�Si� � �, Rb � g�Si� � � , �2�

then unite them by appending elements of Rb to Ra. This
merging procedure stops properly when R has only one ele-
ment, i.e., R= �R1�.

�3� Finally, � is given by �=R1.
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FIG. 1. �a� A schematic of one-dimensional potential energy
with five local minima L1 ,L2 , . . . ,L5 and four saddle points
S1 ,S2 ,S3 ,S4, indicated by white and black circles, respectively. The
corresponding DG and SCG are shown in �b� and �c�, respectively.
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The resulting � is normalized such that the global mini-
mum �GM� of L1 is placed on the extreme left, i.e., ��1�
=1. Note that if R otherwise has more than two elements at
the end of the procedure, then the LMs are disconnected by
the SP linkages listed in the present database. In this case, we
have to redefine the total set of LMs as the first element of R
including the GM, and the resulting saddle connections are
restricted to be between them. Otherwise, we have to go back
to the database construction and enhance its completeness
�33�.

For example, the metabasin analysis for the one-
dimensional potential depicted in Fig. 1�a� proceeds as fol-
lows:

S1

S2

S3

S4

By using the resulting order �= �1,2 ,5 ,3 ,4�, we depict the
SCG for this example in Fig. 1�c�. By comparison with the
DG of Fig. 1�b�, it can be seen that the SCG shows the
disconnectivity of the schematic PES. The more important
feature is that, as expected, the SCG represents the direct
connection between L1 and L5 by a single horizontal segment
connecting two vertical lines drawn from points 1 and 5.

C. Disconnective and nondisconnective saddles

In order to show the difference between DGs and SCGs,
we classify saddles into two types: disconnective saddles
�DSs� and nondisconnective saddles �NDSs�. When the total
energy of the system is lowered below the potential energy
of a certain DS, the basin that is connected by the DS splits
up into two basins. In contrast to this, in the vicinity of the
energy of a NDS, there is no decomposition of basin result-
ing from the NDS. Hence, the DSs represent the energeti-
cally cheapest pathways to travel. The NDSs are more ex-
pensive but can be dynamically dominant pathways between
some two minima. Note here that, in the course of the me-
tabasin analysis described in Sec. II B, saddles are classified
to be DSs if Eqs. �2� are satisfied; otherwise, they are clas-
sified to be NDSs. It should be emphasized that the SCG
represents both the DSs and the NDSs, while the DG does
not represent the NDSs.

D. Higher-order saddles in SCG

Here, we generalize SCGs to represent higher-order
saddles. A higher-order saddle is a stationary point with more

than one negative eigenvalue of the Hessian matrix, and the
order of saddle is the number of the negative eigenvalues.
Higher-order saddles can connect more than two LMs. Fig-
ure 2�a� illustrates this point: a second-order saddle S4 con-
nects three LMs of L1, L2, and L3.

As shown in Fig. 2�b�, S4 is represented by a horizontal
segment with three contact points that are joined to the ver-
tical lines of these LMs at the saddle-energy level, in the
corresponding SCG. This expressiveness is another advan-
tage of SCG over other graph methods.

Note that the possibility that these higher-order saddles
play an important role for the relaxation dynamics has been
discussed in, e.g., Refs. �34,35�. In the following, however,
we will focus on ordinary first-order saddle points in SCG,
for the sake of the comparison with the other popular graph
methods.

III. RANDOM FUNNEL MODEL

A visually comprehensive example would be suited for
examining how the SCG works for realistic problems.
Hence, in this section, we introduce a certain type of random
model potential, which we refer to as a RFM. This model is
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S4

L2

L3

L1

(a)
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S1
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FIG. 2. �Color online� �a� A schematic of 2D PES having three
local minima L1 ,L2 ,L3 and four saddle points, where S1 ,S2 ,S3 are
first-order and S4 is a second-order SP, i.e., maximum in the 2D
configurational phase space. �b� The corresponding SCG is de-
picted. Note that S4 is represented by a horizontal line with three
contact points �see text�.
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not only simply illustrative, but also is able to represent a
funnel structure, which has been widely discussed as a key
factor for fast protein folding dynamics in kinetic approach.
In the following, we show that, with the help of SCG visu-
alization, the RFM changes from multifunnel, through single
funnel, to smooth funnel feature by increasing its funnel in-
clination parameter.

In order to ensure spatial periodicity of the RFM, we em-
ploy the following procedure to construct the PES. The 1D
RFM potential V�x� is a convolution of a Gaussian kernel,
standard deviation �,

G�x� =
1

�2��
e−x2/2�2

, �3�

with distribution ��x� that is a sum of delta functions

��x� = 	
n=−�

�

	
j=1

L

Aj��x − j − nL� , �4�

where the periodic boundary condition is imposed on the
interval �0,L� and the amplitudes Aj are randomly sampled
from the uniform distribution on the interval of U�n��An
�U�n�+1, with a prototype function U. The prototype func-
tion U�x� is chosen as a funnel-shaped function

U�x� =
2F�x − L/2�

L

with funnel inclination parameter F. Lastly, for computa-
tional simplicity, V�x� is low-pass filtered with the reciprocal
wave number � of the lattice. The Fourier-based actual com-
putation for V�x� is described in Appendix A.

Next we introduce the d-dimensional RFM potential
V�x1 ,x2 , . . . ,xd�
V�x�, which is similarly constructed by the
convolution of the Gaussian kernel

1

��2���d
exp�−

	
i=1

d

xi
2

2�2 �
with the delta-function potential located at integer points x
= j �1	 j1 , j2 , . . . , jd	L�. The delta-function amplitudes Aj
are sampled from the uniform distribution on the interval
from U�j� to U�j�+1 with a d-dimensional funnel-shaped
function of funnel depth F,

U�x� =

2F max
1	i	d

��xi − L/2��

L
. �5�

Then the periodic boundary condition is imposed on the
d-dimensional unit square D
�0,L�d. In actual computation,
V�x� is also efficiently evaluated via Fourier-based proce-
dures, as described in Appendix A.

Here, we examine the two-dimensional �2D� RFM. The
left panels of Fig. 3 show the contour plots of 2D RFMs for
F=0, 0.4, 0.8, 1.2, and 2.4 with an identical seed of the
random number generator. These figures elucidate that a
larger F yields a smoother funnel-shaped PES. The configu-
ration space of the RFM of F=0 in Fig. 3�a� is divided into
multiple LM basins of approximately equal areas. When F

becomes larger, however, the GM near the center �x ,y�
= �8,8� sinks and its basin becomes dominating, as clearly
shown in Figs. 3�b� and 3�c�. For larger F, the funnel char-
acter gradually becomes apparent, as typically shown in
Figs. 3�d� and 3�e�, where the GM becomes deeper and some
LMs at F=0 disappear.
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FIG. 3. �Color online� Left panels: contour plots of two-
dimensional RFMs with L=16 and �=0.73 for F=0, 0.4, 0.8, 1.2,
and 2.4 are shown in �a�, �b�, �c�, �d�, and �e�, respectively. The
LMs �boxes�, the SPs �stars�, and the boundaries of the LM basins
�green �light-gray� lines� are also depicted. Right panels: The SCGs
corresponding to the left panels are presented in �f�–�j� with the
vertical axes of potential energy. Here, the orange �light-gray� and
the blue �dark-gray� lines denote the pathways which run through
DSs and NDSs, respectively. In �f�–�h�, for eye guidance, arrows,
which indicate the bottoms of funnels contained in the potentials,
are shown.

OKUSHIMA et al. PHYSICAL REVIEW E 80, 036112 �2009�

036112-4



Let us examine how these RFMs are represented in the
corresponding SCGs. The right panels of Fig. 3 are the SCGs
corresponding to the contour plots in the left sides, respec-
tively.

First, as shown in panels �f�–�h�, the PESs of small F are
composed of multiple funnels. Each funnel contains multiple
LMs and SPs. The SP with lowest energy in each funnel is
indicated with an arrow. These bottoms are relevant for, for
example, the Markovian hopping dynamics, because the
back-and-forth motions over these saddles are very frequent
and thus there can appear kinematic traps, as discussed in
Ref. �16�. Note that the decrease in the number of the funnels
with increasing F is apparent in the SCGs, while this is not
clear in the contour plots.

The SCG of 2D RFM with F=0 in Fig. 3�f� shows that
the random-energy LM lines are randomly connected, at
various saddle energy levels, with �M −1� DS lines �M =the
number of LMs� in a relatively low energy region ESP
0.6,
as well as with many extra NDS lines in a relatively higher
ESP�0.5, where some NDSs are coexistent with DSs in
0.4
ESP
0.6. In addition, we see that the PES is composed
of five funnels.

The SCG with F=0.4 in Fig. 3�g� also exhibits five fun-
nels, while LM energies are not completely random any
more. Instead, we see the clear tendency that the more right
LM is placed on the horizontal axis, the higher is the energy
of the LM. Namely, the higher-energy LM tends to be con-
nected with the GM at higher energy. In this case too, many
NDS lines connect many pairs of LMs both in the coexistent
and in the higher region.

In contrast to these, the SCG with F=0.8 in Fig. 3�h�
exhibits two funnels and the tendency of the LM-energy dif-
ference from the GM is more apparent. Furthermore, accord-
ing to the expansion of the GM basin, the number of LMs
adjacent to the GM is increased, which is also clear in the
corresponding SCG from the many direct links that connect
the GM to the surrounding LMs.

The SCG with F=1.2 in Fig. 3�i� exhibits a rugged single
funnel feature clearly, where each LM has at least one path-
way to the GM with monotonically decreasing saddle ener-
gies.

A typical SCG for smooth funnel-shaped PES is plotted in
Fig. 3�j� for F=2.4, where the barrier height of the DS from
each LM to the left LM is very low. Now all direct links to
the GM from the adjacent LMs become DS lines. This sug-
gests that, when a PES is a smooth funnel, the description of
DSs becomes a good approximation for low-energy topol-
ogy, because the contribution of few NDSs to the connectiv-
ity is negligible compared to that of DSs �see below�. In this
section, we have shown that the SCG, by the graph of LMs
connected by DSs and NDSs, effectively represents the to-
pography of PES, including the number of funnels and the
smoothness and the steepness of funnels.

IV. PATHWAYS IN KINETIC PROCESS

We have seen that DSs and NDSs coexist in energy bands.
In low-temperature limit, only the most energetically eco-
nomical saddles are effective and the dynamics is governed

by the least energy principle. However, as the temperature is
raised, there is a chance for an energetically expensive NDS
to become a segment of most dominant pathways. Our inter-
est in this section is how these dominant pathways are se-
lected at various temperatures. To clarify this, we examine,
with the help of the SCGs, the switches of routes of the
dominant pathways.

A. Rate constants

The flux-over-population method is a common procedure
to evaluate rate constants. According to Ref. �36�, an external
sink and a source are connected to the domains of Lb and La,
respectively, to build a nonequilibrium steady-state current J.
This nonequilibrium steady state is further subjected to the
boundary condition that the density inside the domain of the
sink is zero.

Then the corresponding rate kb←a of the passage is given
by

kb←a =
J

�
= �−1, �6�

where � is the population inside the domain of the source and
� is the mean first passage time from La to Lb.

When the intra-LM dynamics loses its memory so fast as
to forget the previous inter-LM hoppings, the inter-LM dy-
namics is described by the following coupled master equa-
tions:

dPi�t�
dt

= 	
j�i

�kijPj�t� − kjiPi�t�� + Ji, �7�

J = J for i = a

− J for i = b

0 for i � a,b ,
� �8�

where Pi�t� denotes the occupation probability in Li at time t
and kji is the rate constant for a direct transition from Li to an
adjacent Lj. In the following, we use the expression of kji in
the canonical RRKM theory, which is summarized in Appen-
dix B.

B. Dominant-path switches

The rate constant is evaluated for an illustrative simple
model with the flux-over-population method, where the
maximum probability flow pathways switch with varying
temperature and the dependency is well described by an ap-
proximate expression. Here, we use the four-LM model de-
picted in Fig. 4�a�. From Eq. �7�, the flux J from L4 to L1 in
Fig. 4�a� obeys

dP1

dt
= k3P2 + k4P3 − �k3 + k4�P1 − J ,

dP2

dt
= k3P1 + k1P3 + k5P4 − �k1 + k3 + k5�P2,

dP3

dt
= k4P1 + k1P2 + k2P4 − �k1 + k2 + k4�P3,
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dP4

dt
= k5P2 + k2P3 − �k2 + k5�P4 + J ,

where ki is the rate for crossing the saddle Si �i
=1,2 , . . . ,5�.

The stationary flux under the condition that P1=0, P4=1
is given by

P2 =
k4k5 + k1k5 + k1k2 + k5k2

k3�k4 + k1 + k2� + k4�k1 + k5� + k1�k5 + k2� + k5k2
,

�9�

P3 =
k1k5 + k3k2 + k1k2 + k5k2

k3�k4 + k1 + k2� + k4�k1 + k5� + k1�k5 + k2� + k5k2
,

�10�

J = k3P2 + k4P3. �11�

Thus, the rate k1←4 is given by

k1←4 =
J

P4
= J . �12�

Note that this model has four different pathways from L4
to L1, namely,

�1:S3 ← S1 ← S2,

�2:S4 ← S2,

�3:S3 ← S5,

�4:S4 ← S1 ← S5.

The flow j��� along pathway � is equal to the minimum of
the flows along all the directed segments. Figure 4�b� shows
j��i� as functions of temperature, for i=1,2 ,3 ,4. We see that
as the temperature is decreased, the maximum flow pathway
changes from �2 to �1 at around =0.5.

When a maximum flow pathway � sufficiently dominates
others, the rate conducted by � is well approximated by the
rate of the hypothetical one-dimensional system that is com-
posed only of the elements of �, because other segments of
the original system are negligible in this case. As shown in
Fig. 4�b�, this hypothesis is actually satisfied except near the
switching temperature at around �0.5. Hence, the rate
along � is approximated by

1

k�

=
1

ki1,i0

+
1

ki2,i1

ki0,i1

ki1,i0

+
1

ki3,i2

ki1,i2

ki2,i1

ki0,i1

ki1,i0

+ ¯

+
1

kin,in−1

�
m=1

n−1 kim−1,im

kim,im−1

, �13�

or equivalently,

1

k�

= he−Ei0
LM

Zi0
��	

m=1

n
eEim

SP

Zim
† ��

, �14�

where � is a n-step pathway from La to Lb,

b 
 in ← in−1 ← ¯ ← i2 ← i1 ← i0 
 a . �15�

See Appendix C for a derivation of Eqs. �13� and �14� and
for the definitions of  ,Zi ,Zi

† in Eq. �14�.
By using Eq. �14�, we compute the approximate probabil-

ity fluxes along the paths �i for the four-LM model of Fig.
4�a�. The approximate rates are plotted in Fig. 4�c�. Figure
4�c� shows that the probability currents carried by the most
dominant pathways are well approximated by the approxi-
mate rates �14� at all temperatures and that the change in the
most dominant pathways is also well described by the same
approximations. For degenerate systems, however, slightly
different pathways may have approximately equal domi-
nance. In such a case, because it is difficult to detect which
one really carries the maximum flow, the switching tempera-
tures calculated by Eq. �14� may give a rough approximation.
Even for these degenerate systems, the comparison of Figs.
4�b� and 4�c� supports the conjecture that the approximate
formula �14� allows a qualitatively good description of the
switches of maximum flux pathways and the order of fluxes
along pathways at a given temperature.

Finally, we remark on the difference between Eq. �14� in
our use and a similar expression used, for example, in Ref.
�37�,

k� =
kb,in−1

kin−1,in−2
¯ ki2,i1

	
�n

k�n,in−1
	

�n−1

k�n−1,in−2
¯ 	

�2

k�2,i1

ki1,a. �16�

As shown in Fig. 4�d�, formula �16� does not give a good
approximation of the rates along the pathways. It is not sur-
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FIG. 4. �Color online� �a� The SCG of a four-LM model. Four
LMs of ELM=0 are connected by five SPs �indicated by circled
numbers in the figure�. The energies of S1 ,S2 , . . . ,S5 are 0.1, 0.2, 1,
2, and 8, respectively. �b� The probability currents from L4 to L1

along distinctive pathways, �1 ,�2 , . . . ,�4 �see text�, are plotted as
functions of . �c� The probability currents calculated via the for-
mula of Eq. �14�, are plotted as functions of . �d� The currents of
Eq. �16� are plotted as functions of , with the same frequency
factors. Here, all frequency factors � ji are set to 1.
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prising because formula �16� computes the hopping rate of
sequential process �, while the formula in our use computes
an approximate rate of all hopping process, including back-
and-forth hoppings along the pathway �. In other words, Eq.
�14� is the approximate summation of Eq. �16� over all con-
secutive hopping processes along �. Note that although for-
mula �16� is useful for efficiently constructing PES data-
bases, because it enables us to extract “fastest pathways” as
shown in Ref. �37�, it cannot be used to approximate the
actual rates carried along the pathways, which are of our
interest in this paper. For this end, we should utilize the
approximate expression �14�.

C. Finding dominant pathways with a Dijkstra shortest path
algorithm

By using the above approximate formula �14�, we con-
struct a procedure of systematic search for most dominant
pathways. The procedure, which is a kind of Dijkstra’s short-
est path algorithm �27�, can be used to find all the dominant
pathways coming into a sink from the other LMs in one
sweep. This method is very efficient and applicable to high-
dimensional PESs.

From Eq. �14�, we immediately see that k��0 for all �
and the largest-rate pathway of interest is equivalent to the
one with the shortest mean first passage time ���
k�

−1�.
Then, Eq. �14� is rewritten as follows:

�� = �cost along path �� � �he−Ei0
LM

Zi0
��� , �17�

where

cost along path � = 	
m=1

n

Cpair�im,im−1� , �18�

Cpair�im,im−1� = exp�Eim
SP�/Zim

† �� . �19�

Note that Cpair�im , im−1� is the positive definite cost of adja-
cent transition �im← im−1� and this definition leads to the
symmetry Cpair�i , j�=Cpair�j , i�. Since the last term in Eq.
�17� depends only on the initial LM, i.e., i0=a, the relevant
path contributing most dominantly to kb←a is finally charac-
terized by the most inexpensive one that minimizes the route
cost �18� with the boundary condition of starting at La and
ending in Lb.

The point is that the most inexpensive paths of interest are
now evaluated methodically by using Dijkstra’s shortest path
algorithm �27�, when the above positive costs are thought of
as the distances. In this paper, we use a reverse Dijkstra’s
algorithm that provides minimum spanning pathways com-
ing into a sink node Lb from all the other nodes, with a slight
modification for evading a difficulty coming from the round-
ing error of floating point computation. The detail of the
algorithm is presented in Appendix D.

D. Dominant pathways in 2D RFM

The shortest-path algorithm is applied to the 2D RFMs
introduced in Sec. III with several funnel inclination param-
eters F. By using the SCG visualization, we consider how

dominant pathways relevant for rate connect LMs and how
these connections change depending on the temperature
change. The dependence of the dominant connections on the
inclination parameter F is also examined.

1. Normal random potential: RFM of F=0

By using the Dijkstra algorithm, the dominant pathways
coming into the GM are computed for RFM of F=0 with
various temperatures. We observe 26 changes of dominant
pathways by varying the temperature. Figure 5�a� is the SCG
of the dominant pathways for high-temperature limit �
→0�. This graph shows that 13 NDS, as well as many DS,
links are chosen for the dominant paths. Since in the extreme
case the energies are irrelevant for the route cost, these paths
are actually the smallest transition-step pathways. At low
temperatures, as depicted in Fig. 5�b�, only NDSs with rela-
tively low saddle energies are chosen as the shortest paths,
thereby introducing the generic tendency that the shortest
paths come to exist in the low-energy region and the number
of NDSs, as a result, decreases as the temperature decreases.
Note that, for the same number of NDSs, shortest path
switching can occur, as exemplified by Figs. 5�b� and 5�c�. In
low-temperature limit, as expected, all the dominant paths
are composed of the DSs. Comparing the DSs in Figs. 5�a�
and 5�d�, we see that the DSs in the fewest-step pathways
�Fig. 5�a�� exist in the relatively high energy region.

2. Single funnel potential: RFM of F=1.2

We observe five changes of dominant pathways coming
into the GM by varying the temperature. Since this potential
has a single funnel character, there exists a pathway from
each LM to the GM with disconnective saddles whose ener-
gies monotonically decrease. The existence of disconnective
pathways excludes all NDSs as elements of dominant path-
ways except very short shortcut NDSs. Hence, as depicted in
Fig. 6�a�, even at high temperature, only five NDSs are used
for dominant pathways, fewer than the normal random po-
tential �13 NDSs in Fig. 5�a��. We see that, as the tempera-
ture is decreased to =8.5, no NDSs are used for dominant
pathways �Fig. 6�c��.

3. Smooth funnel potential: RFM of F=2.4

For this very smooth funnel potential, the dominant path-
ways change only once. Even at high temperature, only one
very short shortcut NDS is used for dominant pathways, as
shown in Fig. 7�a� However, as the temperature is decreased,
we see that the dominant pathways are composed of all DSs
�Fig. 7�b��.

4. Dependence of dominant paths on F

To see how the switches of the dominant paths depend on
temperature more closely, we plot the numbers of NDSs be-
longing to the shortest paths as functions of  for various F
in Fig. 8. We see that for all RFMs the numbers of NDSs
gradually decrease as the temperature is decreased. Further-
more, smoother funnel PESs result in more rapid decreases
in NDSs. Note that, for F=0, a few NDSs remain very com-
petitive even at rather low temperatures �80, where their
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energetic penalties are overcome because of being on the
shortcuts to the GM. These suggest that NDSs become more
competitive for many-dimensional systems, where a rich va-

riety of energetically degenerative dynamical paths is intro-
duced to the PESs.

V. COARSE-GRAINING METHOD FOR SCG

When we try to apply SCG to a realistic multidimensional
system, a well-known difficulty in visualization of DG arises
also in SCG due to the high dimensionality of such a realistic
PES. Namely, the huge number of LM lines makes the struc-
ture of the PES difficult to perceive. A number of coarse-
graining methods for DG, such as lowest minima truncation,
the monotonic sequence method with minima, the catchment
basin transformation, and a procedure of low-barrier group-
ing, have been used �1,22,29,38–40�.

In this section, we develop a monotonic sequence scheme
that groups saddle sequences with increasing flow as a
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FIG. 5. �Color online� The dominant pathways of RFM with
F=0 are represented in SCGs. �a� The SCG at =0. �b� The domi-
nant pathway switches between =22 and 23.5 with the number of
NDSs fixed. The dominant pathways at =22 and 23.5 are super-
posed. �c� The blowup of the switch in �b�. �d� The SCG at =79.
Here, the saddle lines are colored as in Fig. 3. All frequency factors
� ji are set to 1 for simplicity.
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FIG. 6. �Color online� The dominant pathways for RFM of F
=1.2 are represented in SCGs for �a� =0, �b� 5, and �c� 8.5, where
the saddle lines are colored as in Fig. 3. All frequency factors � ji are
set to 1 for simplicity.
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coarse-graining method for our SCG. As shown in the fol-
lowing, this procedure is a coarse-graining method tailored
for extracting the kinetic properties of the system.

A. Monotonic sequence method

We construct the coarse-graining map � for LMs,

Li � Li�
� with i� = ��i� , �20�

where Li�
� denotes the coarse-grained LM of the i�th smallest

energy. As described below, � is composed of two mappings:

�=� ��, where � and � are, respectively, the contraction of
LMs and the sorting of the contracted LMs in the increasing
order of their energies.

The contracting map � is given by the monotonic se-
quences. As depicted in Fig. 9, in each iteration of this algo-
rithm a saddle search is performed in the direction of the
least cost, namely, the maximum flow, at the current LM

La � S � L � ¯ � Sb, �21�

where the dead-end saddle Sb is easily detected in computa-
tion by the coincidence of saddles in two successive transi-
tions. Note that, if all frequency factors are uniform, the
maximum flow saddle is identical with the lowest-energy
saddle at each LM. Nonuniform saddle frequencies, in con-
trast, can result in temperature-dependent funnel decomposi-
tions.

In this way, one obtains the monotonic sequence map

a � b = ��a� . �22�

The monotonic sequence basin �−1�b� is the funnel labeled
by b and all LMs are classified into all the funnels. The
energy of funnel is defined by the lowest energy of �−1�b�,
i.e.,

min�Ea
LM�La � �−1�Sb�� . �23�

Then, the funnel energies are sorted in an ascending order
and the position at which Sb appears in the ordered list is
denoted by ��b�.

Lastly, by identifying the funnels with the coarse-grained
LMs, these procedures define the coarse-graining map

Li � Li�
� , �24�

i� = � � ��i� 
 ��i� , �25�
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FIG. 7. �Color online� The dominant paths for RFM of F=2.4
are represented in SCGs for �a� =0 and �b� 6.5, where the saddle
lines are colored as in Fig. 3. All frequency factors � ji are set to 1
for simplicity.

N
um
be
r
of
N
D
S
s

20 40 60 80

2

4

6

8

10

12

2.6

1.6

1

F=0

β
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pathways are plotted as a function of  for F=0,1 ,1.6,2.6. All
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FIG. 9. 1D example of coarse graining with the monotonic se-
quence method. The arrowed curves represent the monotonic se-
quences. The open circle is a dead-end saddle �Sb in Eq. �21��. The
underbrace is the basin of the monotonic sequence mapping �Eq.
�22��, which defines the funnel. The funnel energy �Eq. �23�� is
represented by the solid circle. The interfunnel saddles are indicated
by down arrows. The other saddles are intrafunnel saddles �see
text�.
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Ei�
LM� = min�Ei

LM�i � �−1�i��� . �26�

Accordingly, the saddle connectivity is also coarse grained as

� � g�Sj� = ���j1�,��j2�� ,

where Eq. �1� is used. Here, Sj with ��j1����j2� are inter-
funnel saddles, while the others are intrafunnel saddles. The
interfunnel saddle energies are sorted in an ascending order
and the position at which the energy of Sj appears in the
ordered list is denoted by ��j�, similar to the treatment of
LMs. The intrafunnel saddles Sj are, for convenience, de-
fined to be mapped to j�=��j�=0.

In this way, one obtains the coarse-graining map for SPs
as follows:

Sj � Sj�
� , �27�

j� = ��j� , �28�

Ej�
SP� = Ej

SP, �29�

g��Sj�
� � = � � g�j� for j� � 1, �30�

�−1�j� = 0� = �intrafunnel saddles� . �31�

The coarse-grained Ei�
LM�, Ej�

SP�, and g� �Eqs. �26�, �29�,
and �30�, respectively� provide the complete data for gener-
ating the coarse-grained SCG. The intrafunnel saddles �31�
disappear from the coarse-grained SCG and, in other words,
are confined into the microscopic level of description intro-
duced via the monotonic sequence method. Note that the
saddle characters of disconnectiveness or nondisconnective-
ness �Sec. II C� are inherited via this coarse graining, be-
cause the above monotonic sequence method preserves the
sequential order of the saddle energies.

Furthermore, on the basis of the approximate rate formula
�14�, we see that the coarse-grained saddles take lots of time
for transition, compared to the intrafunnel saddles, in the
course of wandering among a number of funnels. Hence, the
above-mentioned coarse-graining method not only is a
grouping method that is useful to simplify complicated
graphs but also is a method for extracting the rate-limiting
principal saddles.

B. Iterative use of the coarse graining for extracting
hierarchal connection in PES

By iteratively applying this coarse-graining scheme to
�Ei

LM1�
�Ei
LM�, �Ej

SP1�
�Ej
SP�, g1
g, one obtains a series

of coarse-grained SCG data �Ei
LM2�
�Ei

LM�� , �Ej
SP2�


�Ej
SP�� ,g2
g� , . . ., until it contains only one LM at n

=nmax+1, i.e., �Ej
LMnmax+1�= �EG

LM�. Hence, we obtain the
coarse-grained SCG data

��Ei
LM1�,�Ej

SP1�,g1�,��Ei
LM2�,�Ej

SP2�,g2�, . . . ,

��Ei
LMnmax�,�Ej

SPnmax�,gnmax
� .

Using these coarse-grained data, we obtain the coarse-

grained graphs, SCG1,SCG2, . . .SCGn , . . .SCGnmax
, describ-

ing the connection among coarse-grained funnels at macro-
scopic levels specified by n.

VI. APPLICATION TO REALISTIC SYSTEMS: LENNARD-
JONES CLUSTERS

In this section, we show the SCGs of 13- and 38-atom LJ
clusters, illustrating the applicability to realistic multidimen-
sional systems. First, we discuss the structures of their saddle
connectivity via SCG visualization at various coarse-
graining levels of description. Then, we examine the mean
first passage time statistics, confirming that gradual changes
from liquid to solid phase occur when lowering temperature
in each cluster. Finally, we show, with the use of SCG visu-
alization, that the observed gradual changes result from the
switches of dominant transition pathways at various macro-
scopic levels.

A. Structures of LJ clusters

The Lennard-Jones �LJ� pair potential has the form

V�r� = 4����

r
�12

− ��

r
�6� , �32�

where r is the interparticle distance, � is the depth of the
potential well, and � controls the equilibrium distance be-
tween the neighboring atoms. The distance at the minimum
of the potential well is 21/6�. All quantities reported below
are given in reduced units of � , �. �For argon, the param-
eters are fitted and the values are �=1.67�10−21 J and �
=3.40 Å.�

1. 13-atom LJ cluster

For the 13-atom LJ cluster, we use a stationary point da-
tabase created via discrete pathway sampling method �25�. A
connected set of about 500 LMs including the GM and the
saddles connecting them is used for generating the SCG.

As shown in Fig. 10�a�, there are too many LMs to dis-
tinguish individual lines in SCG1. Hence, the coarse graining
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FIG. 10. �Color online� All of the saddle connections are de-
picted in SCG for 13-atom LJ cluster, where the saddle lines are
colored as in Fig. 3. The vertical axes are stationary point energies
in unit of � and the horizontal axes are the numbers of LM loca-
tions. �a� SCG1: LM lines are drawn in white against the black
background to make them easier to see. �b� SCG2 gives a simplified
description. The structure is a single funnel potential �see text�.
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procedure is iteratively applied to it. We confirm that the
SCG reduces to a single vertical LM line at n=3 and thus
nmax=2. The PES structure is therefore decomposed into two
levels: one is the macroscopic level consisting of the funnels
and the interfunnel saddles �n=2� and the other is the micro-
scopic level consisting of the intrafunnel LMs and the
saddles connecting them �n=1�.

Figure 10�b� shows the SCG2 of LJ13. The coarse-grained
SCG has about 20 coarse-grained LMs. Hence, by the coarse
graining, the LMs are contracted extensively, whose number
is considerably decreased. Moreover, we see that the PES has
the so-called “single funnel structure,” where, from each
coarse-grained LM of LM2, there exists a transition pathway,
to the GM, of disconnective interfunnel saddles with mono-
tonically decreasing energies. Due to the single funnel char-
acter, the kinetically attracting LM of the terminal of all
monotonic sequences agrees with the GM and thus relaxes in
a methodical way to the GM. Note here that many NDSs
connect coarse-grained LMs, as well as microscopic LMs.
The role of NDSs for rate is examined later.

2. 38-atom LJ cluster

Also, here we use a stationary point database of LJ38 con-
structed in Ref. �25�. For the 38-atom LJ cluster, as shown in
Fig. 11, the number of coarse-grained LMs exponentially
decreases as the coarse-graining procedure is repeated. The
SCG reduces to one vertical LM line at n=5 and thus the
PES structure turns out to be composed of four layers:
nmax=4.

Figures 12�a� and 12�b� show the SCG3 and the SCG4 of
LJ38, where all saddles, both of disconnective and of nondis-
connective connections, are depicted. As in the LJ13 case,
many nondisconnective, as well as disconnective, saddles
connect coarse-grained LMs at various macroscopic layers.

In contrast to the case of LJ13, the SCG4 in Fig. 12 shows
that maximum flux pathways, of monotonically decreasing
DSs in this case, reach the second lowest coarse-grained LM
and start to move back and forth with the third LM from the
left, which forms a kinetic trap at low temperature �the up
arrow in Fig. 12�b��. To reach the GM, the system must
break away from the trap, next climbing the DS connecting
L1 and L2. In this sense, the PES has the so-called “double
funnel structure” �22,41,42�, with antifocusing character �1�.

B. Mean first passage time

We examine the mean first passage times, from the GMs
to the other LMs, as an indicator of the dynamic properties

on the PESs. Let us recall that, with the use of the total cost
C�i� of Eq. �18�, the mean first passage time from the GM to
Li along the dominant pathway is given by

��i� = C�i�e−EG
LM

ZG�� , �33�

under the same assumption of single dominance of transition
pathways. Here, EG

LM is the energy of GM. The expression
for C�i� in terms of the Dijkstra algorithm is given in Appen-
dix D. Then, ���i� � i=1,2 , . . .� is sorted in order of arrival and
the nth element is denoted by �n. The resulting �n shows the
number of LMs found after a finite time evolution of dynam-
ics.

Figure 13�a� shows �n as a function of n in high-
temperature limit. Note here that the frequency factors are set
to 1, for the sake of the computational simplicity. We see that
all LMs of LJ13 in the figure are accessed from the GM in
four time steps. This implies that these LMs are topologically
connected to the GM by pathways of at most four steps and
more importantly such pathways dominate in actual dynam-
ics in high-temperature limit. Therefore, the dynamical state
can be said to be in a liquid phase in which the system can
travel quickly between any pair of LMs within several steps.

For LJ38, in Fig. 14�a�, we plot �n as a function of n, at
=0, where the frequency factors are also set to 1. We see
that all LMs of LJ38 in the figure are accessed from the GM
within more than a dozen time steps. Moreover, viewing this
as the graph of LM number n found within the waiting time
�, we see that n increases exponentially with � except near
the very end at n�5000. This implies that LMs are found
one after another at a constant rate as � passes. Here, the
system can travel between any pair of LMs within at most
dozens of time steps, which shows again that the dynamical
state is in a liquid phase.

In the low-temperature region, transition times needed for
going over saddles exponentially grow as the temperature
decreases. For this reason, we introduce the marginal passage
time ��n, which is defined by the additional average time for
finding one extra LM, and further convert it to the reduced
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FIG. 11. For the 38-atom LJ cluster, the number of coarse-
grained LMs is plotted as a function of coarse-graining level n. The
number exponentially decreases until it becomes 1 at n=5.
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FIG. 12. �Color online� All of the saddle connections are de-
picted in coarse-grained SCGs �a� and �b� for LJ38, where the saddle
lines are colored as in Fig. 3. The vertical axes are stationary point
energies in unit of � and the horizontal axes are the numbers of LM
locations. �a� SCG3: LM lines are drawn in white against a black
background. �b� SCG4: a simpler description of the PES. The ki-
netic trap at low temperature is indicated by the arrow. The struc-
ture of this cluster is classified as a double funnel potential �see
text�.
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energy gap �En in order to extract useful information from
the changes observed at various temperatures,

��n = �n − �n−1, �En =
ln ��n


. �34�

See Appendix D for the expression for ��n in terms of the
Dijkstra algorithm.

Figures 13�b�–13�d� show the effective energy gaps �En
of LJ13 at various temperatures. Figure 13�b� shows �En as a
function of n at =1. Starting from �E1=min�Ej

SP �Sj
=adjacent to GM�−EG

LM=3.42052, it ranges from −4 to 6.
Almost all LMs up to n�400 are found one after another at
tiny time intervals, corresponding to very small energy gaps.
In this case too, therefore, the state is a liquid phase.

At a relatively low temperature =4, in contrast, the ef-
fective gaps increase as shown in Fig. 13�c�. Especially,
around from n=100 to 400 the tendency fits approximately
to a line, implying that the marginal passage time for finding

one extra LM increases exponentially as time passes: ��n
�exp��an+b�� with constants a and b. In low-temperature
limit, the effective gaps converge to a curve as shown in Fig.
13�d�. Moreover, it shows that the limiting curve is in accor-
dance with the lower envelope of disconnective saddles,
which is natural because, in such a low-temperature region,
NDSs—being energetically more expensive than the discon-
nective ones—are not allowed any more.

Next, we plot the effective energy gaps of LJ38 in Figs.
14�b�–14�d�. In high-temperature region �=1�, LMs up to
n=5000 are found one after another at tiny time intervals,
corresponding to very small energy gaps, ranging from −2 to
−7, as shown in Fig. 14�b�. In this case too, the state is a
liquid phase. In contrast, Fig. 14�c� shows that at a relatively
low temperature �=7.5� the high-energy gaps of �E�3 ap-
pear from n=1 to �200 and then the small gap region
widely spreads up to about n=4000. Hence, once having
climbed over the high-energy gap region, the state suddenly
spreads over the small gap region. In the low-temperature
limit, the LM of �E�0 at n�180 corresponds to the second
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FIG. 13. �Color online� The mean first passage times � and the
reduced energy gaps �E in unit of � of the LJ13 cluster. �a� The
passage times �n at =0 are plotted as a function of the order n of
arrival. All frequency factors � ji are set to 1. The reduced energy
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400. For eye guidance, �En=3.42 is plotted �dashed line� in �b�; in
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lowest icosahedral conformer and, as in LJ13, the limiting
curve is in accordance with the lower envelope of disconnec-
tive saddles, as illustrated in the =400 case �Fig. 14�d��.

C. Saddle connectivity graph analysis for dominant
pathways

We have observed the temperature-dependent switches of
dominant pathways that carry the maximum probability cur-
rents, confirming that the dominant pathways change from
the fewest-step pathway �i.e., maximum frequency path-
ways� to the smallest energy pathways, as temperature is
lowered. The question addressed here is how the dominant
pathways are determined by dynamics between the limiting
temperatures. To elucidate this, we study the pathway
changes at intermediate temperature by using SCG visualiza-
tion at the most macroscopic level �n=nmax� for each cluster.

In Fig. 15, the most dominant pathways of LJ13 from the
GM, at =1 �Fig. 15�a�� and 3.6 �Fig. 15�b��, are shown in
second-order coarse-grained SCGs. Figure 15�a� shows that
at high temperature great many NDSs, as well as DSs, are
utilized to link coarse-grained LMs together. Namely, at the
temperature, many microscopic LMs contained in coarse-
grained LMs are directly connected by NDSs. This is consis-
tent with the above observation that at high temperature

pathways are routed on the fewest-step principle because, for
connecting all LMs to the GM within a few steps, the system
has to utilize not only disconnective but also many shortcut
nondisconnective saddles even at the macroscopic level.

As shown in Fig. 15�b�, at relatively low temperature the
number of NDSs on the dominant paths is decreased. Espe-
cially, all dominant pathways from the right LMs �at around
15–20� become disconnective. Due to the funnel character of
LJ13, LMs to the right in SCG2 are connected with relatively
high energy saddles. These high-energy saddles, except in-
dispensable DSs, soon become unused with lowering tem-
perature. Hence, at low temperature, almost all dominant
pathways are disconnective and only energetically competi-
tive NDSs, which are at around the bottom of the funnel, can
be dominant. This is qualitatively equivalent to the result of
RFM in the case of the smooth funnel F=2.4 in Sec. IV D 3.

Figure 16 shows the dominant pathways of LJ38 at =2
�Fig. 16�a�� and 30 �Fig. 16�b�� in the most macroscopic
SCG4. At high temperature, as shown in Fig. 16�a�, many
NDSs are dominant, as in Fig. 15�a�. Even at low tempera-
ture, in contrast, competitive NDSs exist due to the multifun-
nel structure of LJ38, as illustrated in Fig. 16�b�. Here, we
again confirmed that the antifocus character of multifunnel
structure results in the multiplicity of dominant pathways
surviving at low temperature. In summary, we confirmed
with the use of SCGs that the dominant pathways of LJ
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FIG. 15. �Color online� The dominant paths for LJ13 are repre-
sented in SCG2 at �a� =1 and �b� 3.6. The vertical axes are sta-
tionary point energies in unit of � and the horizontal axes are the
numbers of LM locations. Here, the saddle lines are colored as in
Fig. 3. All frequency factors � ji are set to 1.
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FIG. 16. �Color online� The dominant paths for LJ38 are repre-
sented in SCG4 at �a� =2 and �b� 30. The vertical axes are sta-
tionary point energies in unit of � and the horizontal axes are the
numbers of LM locations. Here, the saddle lines are colored as in
Fig. 3. All frequency factors � ji are set to 1.
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clusters switch with temperature change even at most mac-
roscopic levels and that the changes are qualitatively equiva-
lent to those of RFMs observed in Sec. IV D, although they
differ in system sizes.

D. Saddle hierarchy in dominant pathways

The pathway switches observed at the most macroscopic
levels suggest that many more nondisconnective to discon-
nective switches occur in microscopic interfunnel saddle
connections. Hence, we count how many NDSs are used for
dominant pathways at each macro-micro hierarchy level. We
classify the saddles into n levels �n=1,2 , . . . ,nmax� by the
following: if a saddle connects nth coarse-grained LMs but
does not connect �n+1�th coarse-grained LMs, we call it a
nth level saddle. In other words, nth saddles are components
exclusively of nth coarse-grained funnels and, therefore, ap-
pear in SCG1,SCG2, . . . ,SCGn and disappear from SCGn+1.

Figures 17�a� and 17�b� show the numbers of nth-order
NDSs in dominant pathways to the GMs as functions of 
for LJ13 and LJ38, respectively. In both figures, we see that
the plots share a common feature that, in high-temperature
region �1, the numbers are approximately constant values,
while as temperature is lowered they decease as �1 /.
Namely, the dominant pathways are chosen in a self-similar
way at different levels from microscopic to macroscopic
scales.

Note that the self-similarity is confirmed both in 13- and
in 38-atom clusters. This suggests that the observed self-
similarity is a universal pair-potential property independent
of the size of clusters.

VII. CONCLUDING REMARKS

In this paper, we have developed a topographic represen-
tation of PES, called SCG, and the usefulness of our method

is also demonstrated by applying it to realistic Lennard-Jones
clusters. As shown in Sec. II, the SCG is a generalized DG,
which is extended to include dynamically dominant NDSs,
as well as static statistically dominant DSs. With this graph,
we have confirmed that the dynamically dominant pathways
are frequently switched with temperature change by studying
the kinetics of Markovian basin hopping on two-dimensional
RFM. The RFM is an illustrative funnel potential introduced
in Sec. III.

In Sec. IV, we developed an efficient method to system-
atically compute all of the dominant pathways, with the help
of Dijkstra’s shortest path algorithm. Especially, with the use
of the 2D RFMs of various funnel inclination parameters, we
computed the numbers of NDSs on the dominant pathways
as an indicator of the multiplicity in the saddle connection on
PES and elucidated the general relation between the multi-
plicity and the funnel smoothness.

In Sec. V, the coarse-graining method for our SCG was
constructed with the use of the monotonic sequence method.
This method identifies macroscopic LMs as funnels of LMs,
with the use of terminal saddles of most probable pathways.
This coarse-graining method not only reduces the graphical
complexity, but also enables us to extract the hierarchical
structures in saddle connectivity by iterative use.

By using these methods, in Sec. VI, we elucidated that the
change in passage time statistics with temperature change
depends on the dominant pathway switches for 13- and 38-
atom LJ clusters. The analysis is based on the data deter-
mined in Ref. �25�. Macroscopically, the properties of domi-
nant pathways of realistic potentials can be qualitatively
understood by the analogy of the simple RFM with suitable
inclination parameters. At each hierarchical level, moreover,
the self-similar power-law dependency of dominant NDSs on
temperature was revealed. The self-similar dependency was
suggested to be common in the same pair-potential clusters.
These show that our methods provide us a sound basis for
understanding the multiple connections in dynamics and
structures on the complex many-dimensional PESs.

Note that, for the sake of computational simplicity, we set
all frequency factors to be 1 in this paper. Of course, the
SCG visualization, the Dijkstra algorithm for dominant path-
ways, and the monotonic basin coarse graining are applicable
to the case of varying frequency factors. However, in this
case, monotonic sequences may depend on the temperature
and thus monotonic sequence basins can change with tem-
perature change. For example, let a LM have two saddles, S1
and S2, of energies E1 and E2 �E1�E2�, respectively, with
frequency factors �1 and �2 ��1��2�. At low temperature S1
is dominant, while at high temperature S2 is dominant.
Namely, the most probable path from the LM changes from
S1 to S2 with raising temperature.

In summary, in order to overcome the difficulty in under-
standing thermodynamic and kinetic properties on compli-
cated potential-energy surfaces, we presented a visualization
procedure, called saddle connectivity graph. This graph
method is applicable to analyzing the kinetics of systems
with complex potential-energy landscapes. We demonstrated
the effectiveness of the method for realistic systems, by ap-
plying it to the coarse-grain analysis of Lennard-Jones clus-
ters with a coarse-graining procedure. The coarse-graining
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method revealed self-similar hierarchical structures, which
are common to many-atom Lennard-Jones clusters. We ex-
pect that these methods will help us to promote our under-
standing of kinetics on realistic complex potential surfaces.
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APPENDIX A: COMPUTATION OF RANDOM FUNNEL
MODEL

In this part, we describe the computational method for
RFM potential introduced in Sec. III. First, for the computa-
tion of 1D RFM potential V�x�, we proceed as follows. We
first set Aj at uniformly distributed random numbers in the
range of 0–1 for j=1,2 , . . . ,L, then translate it under the
periodic condition so that the minimum of Aj is located at the
center j=L /2, and redefine Aj by adding the prototype func-
tion U�j� to Aj. The intermediate potential at this stage is
represented by

W�x� = �G � ���x� = 	
n=−�

�

	
j=1

L

Aj
1

�2��
e−�x − j − nL�2/2�2

,

where � denotes convolution. Finally, RFM potential V�x� is
obtained via low-pass filtering of W�x� with truncation wave
number �.

Here, to efficiently compute the convolution with trunca-
tion, one can resort to Fourier-based techniques, as depicted
in Fig. 18. Namely, we first evaluate the discrete Fourier
transform of Aj as

Ãs =
�2�

L
	
j=1

L

Aje
−iksj , �A1�

with ks=2�s /L and then compute V�x� via the following
Fourier transformation:

V�x� = �
−�

� eikx

�2�
W̃�k�dk = 	

s=−L/2+1

L/2

eiksxG̃�ks�Ãs, �A2�

where the following identities are used:

W̃�k� = �2�G̃�k��̃�k� , �A3�

G̃�k� =
1

�2�
exp�− �2k2/2� , �A4�

�̃�k� = 	
s

Ãs��k − ks� . �A5�

Note that the wave number in Eq. �A2� is in the allowed
region −��k��.

Finally, we explain the computation of d-dimensional
RFM potential V�x1 ,x2 , . . . ,xd�
V�x�. Similarly to the 1D
potential, V�x� is efficiently evaluated via Fourier-based pro-
cedures. Namely, by using the discrete Fourier transform of
Aj,

Ãs = ��2�/L�d 	
j�D

Aje
−iksj �A6�

with ks=2�s /L; V�x� is computed by

V�x� = 	
s

�eiksxG̃�ks�Ãs, �A7�

where 	s�=	i=1
d 	si=−L/2+1

L/2 and

G̃�k� =
1

��2��d
exp�−

�2

2 	
i=1

d

ki
2� . �A8�

APPENDIX B: EXPRESSION OF CANONICAL
TRANSITION RATE

In the canonical RRKM theory, which is in fact equivalent
to the transition state theory, the transition rate kji is given, at
inverse temperature = �kBT�−1 �kB is the Boltzmann con-
stant� by

kji =
1

h

Zj
†��

Zi��
e−�Ej

SP−Ei
LM�, �B1�

where Sj is the saddle for the transition from Li to Lj, Zj
†��

is the transition state partition function of Sj, and Zi�� is the
partition function of basin of minima Li �43�. In harmonic
approximation, the rate constant becomes

kji = � jie
−�Ej

SP−Ei
LM�, �B2�

� ji =
1

2�

�
l=1

n
��l

Li

�
l=2

n
��l

Sj

, �B3�

where � ji is the frequency factor, n is the degrees of freedom,
and �l

P �l=1,2 , . . .� is the lth smallest eigenvalue of the Hes-
sian matrix

Kij =
�2V

�xi � xj
,

at a stationary point P �22�.

}
DFT

FT

Eq.(A5) Eq.(A3)

IFT

FIG. 18. The flowchart of a Fourier-based computation for RFM
V�x�. DFT means the discrete Fourier transform of Eq. �A1�, FT
means the Fourier transformation �A4�, and IFT means the inverse
Fourier transformation �A2�.
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APPENDIX C: DERIVATION OF EQS. (13) and (14)

We here describe the derivation of Eq. �14�, according to
Ref. �44�. In a steady state, the probability current J from La
to Lb, along n-step pathway � �b
 in← in−1←¯← i2← i1
← i0
a� obeys

J = ki1,i0
Pi0

− ki0,i1
Pi1

, �C1�

J = ki2,i1
Pi1

− ki1,i2
Pi2

, �C2�

J = ki3,i2
Pi2

− ki2,i3
Pi3

, �C3�

¯

J = kin,in−1
Pin−1

− kin−1,in
Pin

, �C4�

where kim,in
is the rate from Ln to Lm. By summing Eq. �C1�,

�C2�� �ki0,i1
/ki2,i1

� , �C3�� �ki0,i1
ki1,i2

/ki3,i2
ki2,i1

� , . . . , �C4�
� �ki0,i1

ki1,i2
¯kin−2,in−1

/kin,in−1
¯ki3,i2

ki2,i1
�, one obtains

J =

ki1,i0
Pi0

− � �
m=1

n−1 kim,im+1

kim+1,im

�kin−1,in
Pin

1 +
ki0,i1

ki2,i1

+
ki0,i1

ki1,i2

ki3,i2
ki2,i1

+ ¯ + �
m=1

n−1 kim,im+1

kim+1,im

.

Since an external sink and source are, respectively, con-
nected to Lb and La, we set Pi0

= Pa=1, Pin
= Pb=0. By using

Eq. �6�, one obtains Eq. �13�. Substituting Eq. �B1� into Eq.
�13�, we finally obtain the expression of Eq. �14�.

APPENDIX D: DIJKSTRA ALGORITHM FOR ROUTE
COST (18)

The inverse Dijkstra algorithm works by iteratively updat-
ing two sets, QD and SD, which store, respectively, the unde-
cided and the decided LMs. At each iteration, moreover, the

marginal cost �C�i� of the undecided Li, which is additional
to the cost decided in the previous iteration, as well as the
saddle P�i�, through which the shortest path leaves from Li
are maintained.

We start with

�C�i� = �0 for i = b

� for i � b ,
�

QD = �1,2 . . . ,M� ,

SD = � .

Then, the following iterative procedure is applied until QD
becomes empty:

�1� Find the minimum �C�i� in i�QD, where �C�i� and
P�i� become fixed.

�2� Accordingly, QD and SD are, respectively, updated by
dropping i from QD and appending i to SD.

�3� The unsettled marginal costs are shifted as �C�i��
=�C�i��−�C�i� for i��QD.

�4� Find Li� that are connected to the just previously
settled Li via Sj. For each i�, if Cpair�i , i����C�i��, then make
replacements of �C�i��=Cpair�i , i�� and P�i��= j.

By using these results, the total cost C�i� along the domi-
nant pathway from a Li to Lb is given by

C�i� = 	
k=1

SD
−1�i�

�C�SD�k�� , �D1�

where SD�k� is the kth element of the ordered set SD and SD
−1

denotes the inverse of this mapping. The dominant pathway
itself is easily traced by iteratively finding the next saddle
and the next LM by using P�i� until Lb appears.

Finally, with the use of Eq. �D1�, the following simple
relation holds for the marginal passage time ��n �See Eq.
�34� for the definition�:

��n = �C�SD�n�� for n = 1,2, . . . . �D2�
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