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Changes of graph structure of transition probability matrices indicate the slowest kinetic relaxations
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Graphs of the most probable transitions for a transition probability matrix, eτK , i.e., the time evolution matrix
of the transition rate matrix K over a finite time interval τ , are considered. We study how the graph structures
of the most probable transitions change as functions of τ , thereby elucidating that a kinetic threshold τg for the
graph structures exists. Namely, for τ < τg , the number of connected graph components is constant. In contrast,
for τ � τg , recombinations of most probable transitions over the connected graph components occur multiple
times, which introduce drastic changes into the graph structures. Using an illustrative multifunnel model, we
show that the recombination patterns indicate the existence of the eigenvalues and eigenvectors of the slowest
relaxation modes quite precisely. We also devise an evaluation formula that enables us to correct the values of
eigenvalues with high accuracy from the data of merging processes. We show that the graph-based method is
valid for a wide range of kinetic systems with degenerate, as well as nondegenerate, relaxation rates.
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I. INTRODUCTION

Complex relaxation dynamics, such as glass dynamics
[1–16], folding of biomolecules [17–27], and microcluster
dynamics [28–37], are described frequently by kinetic differ-
ential equations [38–40]:

d

dt
p = K p, (1)

where p = (p1, . . . , pi, . . . , pn) is the probability distribu-
tion vector, and pi is the probability of being in state i, with n

denoting the number of states. K is the transition rate matrix,
whose off-diagonal (i, j ) element describes the transition rate
from the individual state j to the other state i, and whose j th
diagonal element is chosen to satisfy

∑n
i=1(K )i,j = 0 for each

j . Then, the total probability
∑n

i=1 pi is conserved, and, under
a general condition called ergodicity, the eigenvalues λk of K

satisfy the following relation [41]:

λ1 = 0 > λ2 � λ3 � · · · � λn.

Moreover, there exist corresponding eigenvectors vk such that
v1 is the equilibrium of the system satisfying

∑n
i=1(v1)i =

1, and vk (k = 2, 3, . . . ) are the relaxation modes satisfying∑n
i=1(vk )i = 0.
On the other hand, it is a transition probability matrix T (τ ),

describing the time evolution over a finite time interval τ ,
that is observed experimentally [27]. The mapping of the time
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evolution is given by

p(t + τ ) = T (τ ) p(t ) (2)

for t = 0, τ, 2τ, . . . , where T (τ ) = exp(τK ) holds for the
system with the transition rate matrix of K . The eigenvalues
of T (τ ) are given by λ̄k (τ ) = eτλk and hence satisfy the
following relation [27]:

λ̄1(τ ) = 1 > λ̄2(τ ) � λ̄3(τ ) � · · · � λ̄n(τ ) > 0. (3)

Note here that τ is regarded as a coarse-graining parameter
of time, because any relaxation modes, relaxing with rates
faster than 1/τ , satisfy λ̄k (τ ) ∼ 0 and hence are effectively
neglected from T (τ ).

Equations (1) and (2) are called the continuous-time and
discrete-time Markov state models, respectively. These mod-
els have been studied extensively in a wide range of fields.
In particular, Markov properties, in which all transitions from
an arbitrary state do not depend on any previous states, have
been studied in detail because the properties are conditions
for satisfying Markov state models. For example, how one
can introduce coarse-grained states that ensure the Markov
property was studied in [15]. From the τ -dependence of the
eigenvalues of T (τ ), the conditions of τ to ensure the Markov
properties were elucidated in [18]. In addition to these works,
for the renormalization problem, i.e., studies on how to derive
lower-dimensional effective Markov state models, a technique
with use of the Perron cluster algorithm was invented in
[19]. (See, for a review, [27].) Also, we have developed a
renormalization method for the Markov state models, where
renormalized transition rates between coarse-grained states,
called metabasins [42], are defined. We have shown there
that the slowest relaxations are obtained accurately with this
method [43].
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In this paper, by using a multifunnel model that has been
used in our previous studies in Refs. [37,43], we demonstrate
that the metabasin analysis, based upon the most probable
path graphs, is successfully applied to the kinetic differential
equations of Eq. (1) in Sec. III and the coarse-grained time
maps of Eq. (2) in Sec. IV. We then show that these graphs can
describe illustratively the characteristics of multiple-timescale
relaxation dynamics. In particular, a characteristic thresh-
old time τg , at which the intra-funnel relaxation dynamics
switches to the inter-funnel relaxation dynamics, is definitely
extracted. More specifically, we will see that for τ < τg , the
metabasins of T (τ ) are composed of almost the same states,
in spite of the very frequent intra-metabasin recombinations
of most probable transitions. In contrast, for τ � τg the
metabasins begin to merge with each other, due to the inter-
metabasin recombinations of most probable transitions. We
then elucidate in Sec. V A how and why these graph structure
changes correspond to the eigenvalues and the eigenvectors
of the slowest relaxation modes. Furthermore, in Sec. V B
we devise an evaluation formula that enables us to correct
the values of the eigenvalues with high accuracy from the
data of merging processes. As shown in Sec. V C, these
graph-based methods are valid for the degenerate, as well as
nondegenerate, relaxation rate systems.

In this study, we elucidate how one can extract information
about relaxation rates and eigenvectors of K from the graph
structures of T (τ ).

II. MODEL

In this section, we introduce the four-funnel model used
in Refs. [37,43], which models basin hopping on high-
dimensional potential energy landscapes. We assume that
the intrabasin relaxation modes relax so fast that any prob-
ability densities ρ(r ), where r is a coordinate vector of all
atoms, are expressed as the linear combinations of the intra-
basin local equilibria, ρi (r ), in basins of i. Namely, ρ(r ) =∑n

i=1 piρi (r ) holds, where n is the number of basins and pi

is the probability of being in basin i. Hence, the probability
density ρ(r ) is fully specified by the probability vector p =
(p1, . . . , pi, . . . , pn). In addition, the saddle point, which
connects basins i and j , is denoted by ij , so that ij = ji

holds. Moreover, we assume that the hopping rates between
the adjacent basins are given by the Arrhenius transition rates
[39,40]. Namely, the transition rate from state j to state i( �=j )
is given by

ki,j = νi,j e
−β(Eij −Ej ), (4)

where Eij is the energy of saddle point ij , Ej is the minimum
energy in basin j , and νi,j is the frequency factor of transition
j → i. In the following, we set νi,j = 1 for all i and j for the
sake of simplicity.

Figure 1 depicts a four-funnel model in what we call
a saddle connectivity graph, where basin energies Ei and
saddle energies Eij are represented for all basins of i and
for all saddles of ij , respectively [37]. For the sake of repro-
ducibility, the Supplemental Material of LM4funnel.dat and
SP4funnel.dat [44] is attached to this paper. Ei is written in
the ith line of LM4funnel.dat. The triplet data of i, j , and
Eij are written in each line of SP4funnel.dat. Figure 1 shows

FIG. 1. Saddle connectivity graph for a four-funnel model [37].
Vertical upward lines at i = 1, 2, . . . , 48 starting at Ei represent
states of i. Horizontal lines at E = Eij connecting i and j represent
saddles ij . Most probable transitions j → i are also shown by (red)
arrows from j to i. (See the text.)

that metabasins of MB1, MB2, MB3, and MB4 are composed
of {1, . . . , 13}, {14, . . . , 26}, {27, . . . , 38}, and {39, . . . , 48},
respectively, where the saddles densely connect every state
to the other states belonging to the same metabasins as well
as the different metabasins. The shapes of metabasins are
said to be funnel-like because in each metabasin there exist
pathways along which the basin energies Ei and the saddle-
point energies Eij , respectively, decrease monotonically upon
approaching the minimum energy states in the metabasins.

With the use of Eq. (4), we calculated ki,j at β = 5 and
diagonalized matrix K , whose off-diagonal elements are given
by (K )i,j = ki,j . The eigenvalues of λ1, λ2, λ3, λ4, . . . are
given by

0,−0.0886,−0.154,−0.235,−1.285, . . . , (5)

where λ1 = 0 corresponds to the equilibrium, λ2, λ3, λ4 ∼
−0.1 are the three slowest relaxation rates, and λk < −1
(k � 5) are the relaxation rates that are more than one order of
magnitude faster than the slowest relaxation of λ2. In Fig. 2,
we show these slowest eigenvectors vk for k = 1, . . . , 4. We
see that the equilibrium distribution v1 (circles with dashed
lines in Fig. 2) is the superposition of the four intra-metabasin
local equilibrium distributions, which have the local maxi-
mal probabilities at the funnel bottoms of i = 1, 14, 27, 39.
Figure 2(a) shows that the slowest relaxation mode v2 gen-
erates the probability flow from the local equilibrium in
{27, . . . , 48} to the local equilibrium in {1, . . . , 26}. Similarly,
v3 generates the probability flow from the local equilibrium
in {14, . . . , 26} to that in {1, . . . , 13} [Fig. 2(b)] and v4

generates the probability flow from that in {27, . . . , 38} to that
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FIG. 2. Eigenvectors v2, v3, and v4 of transition rate matrix K

for the four-funnel model of Fig. 1 at β = 5 are plotted in (a), (b),
and (c), respectively. In each plot, the equilibrium, v1, is also plotted
using circles connected with a dashed line for comparison. Here, v1

is normalized as
∑n

i=1(v1)i = 1, and vk (k � 2) are scaled such that
the components satisfying (vk )i > 0 approximately agree with (v1)i .

in {39, . . . , 48} [Fig. 2(c)]. (For details, see the discussion in
Sec. IV B.)

Note here that there are various ways of introducing
metabasins. For example, Perron cluster algorithms utilize the
slowest relaxation eigenvectors of Markov state models [27],
and other lumping methods combine states that are separated
by small energy barriers [16]. In the following, the metabasins
are introduced with the use of the most probable transitions,
in the same manner as in [15,36].

III. MOST PROBABLE PATH GRAPH OF K

In this section, we discuss why and how we introduce
the most probable path graph. Saddles ij (=ji) enable the
transitions of i → j and j → i. Hence, we can draw a graph
by connecting the indices of states i and j by edges for all

FIG. 3. Transition graph for the four-funnel model of Fig. 1,
where all possible transitions between the saddles of ij are repre-
sented by the edges connecting vertices i and j .

saddles of ij . Figure 3 shows the transition graph of the
four-funnel model depicted in Fig. 1. The graph contains
all information about possible transitions or basin adjacency,
except the information about energy levels of Ei and Eij due
to the contraction of energy-height information. However, the
funnel structures, which are seen in the saddle connectivity
graph of Fig. 1, are not apparent in Fig. 3, due to the cumber-
some graph structure. The reasons for the failure to capture
the funnel features is because the important transitions and
the unimportant transitions are equally drawn in Fig. 3.

To tame the graph structural complexity, we introduce
here an alternative graph that consists only of the most
important transitions. Suppose that the probability vector
(p1, p2, . . . , pn) at a moment is given by pi = δi,j . Then,
any transitions j → i can occur at the moment if ki,j �= 0
(i �= j ). Hence, the most probable transition from j is given
by j → i such that ki,j = max{ki ′,j | 1 � i ′ � n, i ′ �= j}. In
Fig. 1, all of the most probable transitions j → i are shown by
red arrows for the four-funnel model, from which we see that
the most probable transitions are folded in the four funnels.
This means that the funnel structures can be extracted by the
simpler subgraph of the most probable transitions.

In Fig. 4(a), we show the most probable path graph of K ,
which is the directed graph of most probable transitions for K ,
where all the most probable transitions j to i are represented
by the arrows from j to i. As we expected, the graph is
composed of the four connected graph components, which
correspond to the four metabasins of MB1, MB2, MB3, and
MB4 depicted by red arrows in Fig. 1. Moreover, we see that
each graph component has an attracting cycle i → j → i (in
the following abbreviated as i ⇔ j for simplicity) contain-
ing the lowest energy state in the corresponding metabasin.
Hence, we introduce the following compact notation:

MB1(1 ⇔ 2) = {1, 2, . . . , 12},
MB2(14 ⇔ 15) = {13, 14, . . . , 26},
MB3(27 ⇔ 28) = {27, 28, . . . , 37, 48},
MB4(39 ⇔ 40) = {38, 39, . . . , 47},

(6)
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FIG. 4. Most probable path graphs for (a) K and T (τ ) with τ = 0.0001 (both are the same graph) and for T (τ ) with (b) τ = 0.1, (c) τ = 1,
(d) τ = 4.197. Each graph of (a)–(d) has four connected graph components, which we call the metabasin. (See the text.)

where MBk (i ⇔ j ) = {i, j, j ′, j ′′, . . . } means that MBk with
cycle i ⇔ j is composed of {i, j, j ′, j ′′, . . . }.

In this section, we have confirmed that the most probable
path graph [Fig. 4(a)], as well as the saddle connectivity graph
(Fig. 1), can extract the metabasin structures of transition rate
matrices of K .

IV. MOST PROBABLE PATH GRAPH OF T (τ )

Unfortunately, the saddle connectivity graph, as well as
other graphing methods such as the disconnectivity graph
[39], is not applicable to the transition probability matrix
T (τ ), because both Ej and Eij , which are indispensable for
drawing these graphs, are not defined in T (τ ). In contrast,
the most probable path graph of T (τ ) is naturally defined, as
shown below.

The transition probability from j to i in the duration
of time τ is given by [T (τ )]i,j . Hence, the most proba-
ble transition from j in τ is given by j → i such that
[T (τ )]i,j = max{[T (τ )]i ′,j | 1 � i ′ � n, i ′ �= j}. The most

probable path graph of T (τ ) is drawn by arrows from j

to i for all of the most probable transitions j → i with-
out difficulty, in the same way as the graph for K was
drawn.

In the following, we study the structural changes of the
most probable path graph of T (τ ) with varying τ , thereby
elucidating that there exists a kinetic threshold, τg , of time
interval such that

τg � 4.198. (7)

Specifically, the members of metabasins are approximately
conserved for τ < τg (Sec. IV A), while there are several
mergings of metabasins for τ � τg (Sec. IV B).

Also in Ref. [15], the most probable paths of T (τ ) were
studied to investigate the Markov property in metabasin space
for a glass former. Moreover, in Ref. [18], the τ -dependencies
of T (τ ) were elucidated in order to examine the Markov
property in the eigenvector space.
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A. τ < τg case

As shown in Figs. 4(a)–4(d), the most probable path graphs
of T (τ ) for τ < τg have four connected graph components. At
τ = 0.0001, the most probable path graphs for T (τ ) and K

are identical. Hence, we call the four connected components
the metabasins of MB1, MB2, MB3, and MB4 for T (τ ), as we
did for K in Sec. III. Of course, all the cycles and members of
MBk are the same as Eq. (6). Note here that the coincidences
of metabasins of K and T (0.0001) mean that the metabasin
coarse-graining developed in Ref. [43] is a sound basis for
the stable description, or the renormalization, of the kinetic
evolutions of Eqs. (1) and (2).

The most probable path graph of T (τ ) with τ = 0.1 is
shown in Fig. 4(b), where, while all of the cycles are the
same as the cycles of τ = 0.0001 in Fig. 4(a), the members
of metabasins slightly change: state 13 moves from MB2 to
MB1 and state 48 moves from MB3 to MB4, which results in

MB1(1 ⇔ 2) = {1, 2, . . . , 13},
MB2(14 ⇔ 15) = {14, . . . , 26},
MB3(27 ⇔ 28) = {27, 28, . . . , 37},
MB4(39 ⇔ 40) = {38, 39, . . . , 47, 48}.

(8)

Note here that the moving states of 13 and 48 are the periph-
eral states that are far from the cycles.

More specifically, the graph of Fig. 4(b) consists of the
more direct transitions to the attractive cycles compared to
Fig. 4(a). Hence, the longer the time evolution is, the more
directly the states arrive at the attractive cycles, which means
that the probability vectors from any states tend to evolve into
the intra-MB local equilibria to which they belong.

For 1 � τ < τg , the compositions and the cycles of
metabasins do not change as

MB1(1 ⇔ 2) = {1, . . . , 13},
MB2(14 ⇔ 15) = {14, . . . , 26},
MB3(27 ⇔ 28) = {27, . . . , 38},
MB4(39 ⇔ 40) = {39, . . . , 48}.

(9)

Note here that these MBs agree with the MBs read from Fig. 1.
Moreover, comparing Figs. 4(c) and 4(d), we see that the most
probable transitions are reconnected within MB1 in the time
duration from τ = 1 to 4.197. Especially at τ = 4.197, all
transitions become the direct transitions to the most probable
states in the intra-metabasin local equilibria, which means that
all states within a metabasin evolve to the intra-metabasin
local equilibrium in the course of time with τ = 4.19, and, as a
result, that all the most probable transitions become the direct
transitions to the most probable states in the intra-metabasin
local equilibria.

In this subsection, we elucidated the following: (a) The
members of metabasins of T (τ ) remain almost unchanged
for τ < τg . (b) The cycles of metabasins remain exactly the
same. (c) The moving peripheral states that are located far
from the attracting cycles can change metabasins to which
they belong. (d) At τ = 4.19, all states evolve to the intra-MB
local equilibria, and thus the most probable transitions at the
time become the direct transitions to the lowest energy states
in the metabasins.

B. τ � τg case

For τ � τg , the metabasins of T (τ ) merge with each other
several times, as shown in Figs. 5(a)–5(e). The merging pro-
cesses are essentially described by the recombinations of the
transitions that are constituents of attractive cycles. As shown
in Fig. 4(d), the metabasins at τ = 4.197 (<τg) include

MB3(28 ⇔ 27) and MB4(39 ⇔ 40). (10)

They merge with each other and form a bigger metabasin
MB{3,4} at τ = 4.198 ((�)τg), as

MB{3,4}(28 ⇔ 27 ← 39 ← 40). (11)

Expressions (10) and (11) clearly show that the most probable
transition 39 → 40 at τ = 4.197 is changed to 39 → 27 at
τ = 4.198. It is this newly created most probable transition
that is expected to induce the transport of the excess probabil-
ity between MB3 and MB4. Let us confirm this expectation by
using the eigenvalues and eigenvectors of K . First, τ = 4.198
corresponds to the rate of −1/τ ∼ −0.24. At around −0.24,
we indeed find the eigenvalue of λ4 = −0.235 from the list
(5) of the eigenvalues. The corresponding eigenvector v4 is
plotted in Fig. 2(c), where the excess (v4 > 0) and the short-
age (v4 < 0) from the equilibrium distribution, respectively,
correspond to the intra-MB3 and intra-MB4 local equilibria.
Both of these deviations change to zero as τ → ∞, since
v4 evolves as T (τ )v4 = eλ4τv4 = e−0.235τv4 → 0 (τ → ∞).
Hence, as we expected, the excess probability in the shape
of the intra-MB3 local equilibrium is transported into the
intra-MB4 local equilibrium, by the relaxation mode of v4 at
around τ = τ4 = τg = 4.198.

The next merging of metabasins occurs at τ = τ3 ≡
10.35. Figure 5(b) shows that the graph components of MB1

and MB2 remain unchanged from τ = 4.198 [Fig. 5(a)],
while the intra-metabasin structure of MB{3,4} changes from
MB{3,4}(27 ⇔ 28) to MB{3,4}(27 ⇔ 39), which indicates that
the intra-MB{3,4} local equilibrium has been achieved until
τ = 10.34. (See the discussion in Sec. V A.) When τ be-
comes τ3, MB1(2 ⇔ 1) and MB2(14 ⇔ 15) merge with each
other, and the resulting metabasin is MB{1,2}(2 ⇔ 1 ← 14 ←
15). Again, we consider the eigenvalue and the eigenvector
corresponding to this merging process. The eigenvalue that
corresponds to the rate of −1/τ3 ∼ −0.1 is identified as
λ3 = −0.154. We plot the corresponding eigenvector v3 in
Fig. 2(b), which clearly shows that the excess probability in
the shape of the local equilibrium of MB2 is transported to the
local equilibrium of MB1, consistently with the graph merging
process at τ = τ3.

Finally, MB{1,2}(1 ⇔ 14) and MB{3,4}(27 ⇔ 39) merge
with each other at τ = τ2 ≡ 27.76, and the resulting
metabasin is given by

MB{{1,2},{3,4}}(1 ⇔ 14 ← 27 ← 39), (12)

where we should point out that MB{3,4}(27 ⇔ 28) and
MB{1,2}(1 ⇔ 2) at τ = 4.198 have changed to MB{3,4}(27 ⇔
39) and MB{1,2}(1 ⇔ 14) until τ = 10.35, respectively. These
changes of cycles mean the achievements of local equilibria
both in MB{1,2} and in MB{3,4}. From this merging process of
MB{1,2} and MB{3,4}, we again expect the relaxation process
between MB{1,2} and MB{3,4} at around −1/τ2 ∼ −0.036. Let
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FIG. 5. Most probable path graphs of T (τ ) for (a) τ = 4.198, (b) τ = 10.34, (c) τ = 10.35, (d) τ = 27.75, and (e) τ = 27.76, which show
the important recombinations of most probable transitions that lead the merging processes of metabasins.

us confirm this expectation. The corresponding eigenvalue is
λ2 = −0.0886, and v2 is plotted in Fig. 2(a), which clearly
shows that the slowest relaxation mode of v2 transports the
excess probability in the shape of the intra-MB{3,4} local
equilibrium to the intra-MB{1,2} local equilibrium at around
the merging time τ2 ∼ 20.76.

C. Summary

Here, we summarize the above findings of how the graph
structural changes indicate the properties of the eigenvalues
and eigenvectors.

In τ < τg , the most probable transitions are confined in
MBk (k = 1, 2, 3, 4). Hence, only intra-metabasin equilibria
can be achieved, and the kinetic system remains globally
nonequilibrium. In contrast, for τ � τg , at around τ = τ2, τ3,
τ4 (τ2 > τ3 > τ4 = τg) the most probable transitions between
metabasins are activated gradually. Especially for larger τ ,
the kinetic system equilibrates globally via the multiple graph
structure changes of the most probable transitions. Based on
these findings, we can say that τg is a kind of glass-transition
time in a sense that within the activation time, the inter-
metabasin transitions are effectively prohibited, while at τ =
τg the transitive phase-space volumes become approximately
doubled.
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FIG. 6. Schematic illustration of the changes of most probable
transitions as a function of τ . Suppose the initial probability dis-
tribution is the local equilibrium in the rightmost basin, which is
represented by the blue filled bell-shaped curve in each figure. The
most probable transitions from the rightmost state at various times of
(a) τ = τa , (b) τb, and (c) τc (τa < τb < τc) are indicated by curved
arrows.

V. DISCUSSION

In this section, we show in Sec. V A that the graph
structural changes can be interpreted as the manifestation of
the time evolution of the local equilibria. In Sec. V B, we
show that the discrepancies between merging rates −1/τi and
the relaxation rates λi arise due to the lag times from the
beginnings of the relaxations to the merging of the basins.
Then, we derive a formula for calculating λi that corrects
the errors arising from the lag times. We also show that,
with the formula, one can evaluate the accurate values of λi

from the actual merging process data. Finally, in Sec. V C
we consider the degenerate λi case, where the properties of
the slowest relaxation modes are derived similarly to the non-
degenerate case by a graph-based analysis. We confirm that
also in this degenerate case, the correcting formula produces
accurate estimates of λi from the actual merging process data.

A. Intuitive explanation

Here, we show that it can be intuitively understood why
the structural changes of the most probable path graphs in-
dicate the existence of the corresponding slowest relaxations.
Figure 6 shows the relationship between the most probable
transitions from the rightmost states (blue filled curves) and

the evolutionary stages of local equilibria from the state.
Figure 6(a) describes that the probability distribution evolves
into the intra-MB local equilibrium state in a finite time τa ,
which is represented by the red filled curve. Hence, the most
probable transition from the rightmost state at that time is the
transition to the minimum energy state within MB4 (curved
arrow). Figure 6(b) shows that the probability distribution
evolves to the local equilibrium of a wider subsystem of
MB{3,4}, at time τb. The most probable transition at τb is
thus from the rightmost state to the minimum energy state
in MB{3,4} (curved arrow). As a result, the probability flow
from MB4 to MB3 is generated at τ2 � τb, which corresponds
to the relaxation mode of rate ∼ −1/τ2 between MB3 and
MB4. Further, as depicted in Fig. 6(c), in a global equilibration
time of τc, the probability distribution evolves to the global
equilibrium (red filled curve). The most probable transition
at τc is hence from the rightmost state to the minimum energy
state (curved arrow). Hence, the probability flow from MB{3,4}
to MB{1,2} is generated at τ1 � τc, which corresponds to the
slowest relaxation mode of rate ∼ −1/τ1 between MB{1,2} and
MB{3,4}. Here, we have reconfirmed that there exist switches
of the most probable transitions from a state corresponding to
changes in the development stages of local equilibria starting
from the state. At each switching time of τ = τi (i = 1, 2),
the probability flow, which changes the local equilibrium to a
wider one, is generated and is related to the slowest relaxation
mode with a relaxation rate of −1/τi (i = 1, 2). Note that in
this illustrating model,

τa < τ2 < τb < τ1 < τc (13)

holds. Hence, the glass-transition time τg , before which the
inter-MB transitions are effectively prohibited, is given by
τg = min{τ1, τ2, . . . } = τ2.

B. Correction formula for estimation of λi

As seen in Sec. IV B, there are small discrepancies between
λi and −1/τi : λ4 � −1/τ4, λ3 � −1/τ3, λ2 � −1/τ2. Now,
the reason is apparent. The changes of local equilibria, which
correspond to the relaxation modes, introduce the change of
the most probable paths. Since the relaxation times of −1/λi

are followed by the structural change times τi , −1/λi < τi ,
and equivalently λi < −1/τi , hold. Hence, the discrepancies
arise from the lag times from the relaxations to the local
equilibrium changes.

The above discussion suggests that we can obtain more
accurate estimates of λi from the merging process data by
correcting the lag-time errors. Toward that end, we first
evaluate the merging time τ under the condition that an
initial local equilibrium distribution pa decays to another local
equilibrium distribution pb by a relaxation mode v. Since
pa − pb ∝ v, the probability distribution at t is given by
p(t ) = pb + exp(λt )( pa − pb ). Then, the most probable path
from the maximum probability state j0 of pa is j0 → ja for
t < τ , where ja is the second maximum probability state of
pa , and it is j0 → jb for τ < t , where jb is the maximum
probability state of pb.
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FIG. 7. For the evaluation of λ2, [T (τ )]ja ,j0 and [T (τ )]jb,j0 with
j0 = 23, ja = 39, and jb = 14 are plotted by blue and orange
lines, respectively, as functions of τ . The intersection at τ = τ2 =
27.76 corresponds to the merging process: MB{1,2} and MB{3,4} →
MB{{1,2},{3,4}}. The local equilibration time τa , (pa )ja

, (pa )jb
, (pb )ja

,
and (pb )jb

, which are necessary for the evaluation of Eq. (15), are
shown in this figure.

Hence, at the merging time τ , [ p(τ )]ja
= [ p(τ )]jb

holds.
By solving this equation for τ , we have

τ = −1

λ
log

(
1 + ( pa )ja

− ( pa )jb

( pb )jb
− ( pb )ja

)
, (14)

where we see that τ > 0 holds, since ( pa )ja
− ( pa )jb

> 0,
( pb )jb

− ( pb )ja
> 0. From Eq. (14), the lag time is given by

τ + 1/λ = −1/λ{log (1 + ( pa )ja −( pa )jb
( pb )jb −( pb )ja

) − 1}.
By solving Eq. (14) for λ, we obtain the formula for λ:

λ = − 1

τ
log

(
1 + ( pa )ja

− ( pa )jb

( pb )jb
− ( pb )ja

)
. (15)

Note here that all values on the right-hand side of Eq. (15) are
determined by the metabasin-merging process data produced
by graph-based analysis.

Let us examine the accuracy of Eq. (15) with the use
of the merging process data of K in Sec. IV B. As shown
in Sec. IV B, the relaxation mode v2 induces a change
of the most probable path from 27 → 39 to 27 → 14 at
τ2 = 27.76. With j0 = 27, ja = 39, and jb = 14, [T (τ )]ja,j0

and [T (τ )]jb,j0 are plotted as functions of τ in Fig. 7. They
surely have an intersection at τ = τ2 = 27.76. [T (τ )]ja,j0

takes the maximum value at τ = τa ≡ 11.4 and decreases
monotonically at τ > τa . Hence, τa is interpreted as the time
required to reach the local equilibrium. Hence, in Eq. (15) we
set τ = τ2 − τa . Accordingly, we set ( pa )ja

= [T (τa )]ja,j0 =
0.1281, ( pa )jb

= [T (τa )]jb,j0 = 0.0749, ( pb )ja
=

min{[T (τ )]ja,j0 | τa < τ � τb} = 0.0967, and ( pb )jb
=

max{[T (τ )]jb,j0 | τa < τ � τb} = 0.1173 with τb = 100, as
illustrated in Fig. 7. Under these conditions, we evaluated
Eq. (15) and have a result of λ = −0.078. This is an
approximate value of the exact λ2 = −0.089, which is much
better than the merging rate estimate of −1/τ2 = −0.036.
Note here that Fig. 7 clearly shows that the relation
τa < τ2 < τb holds. Namely, we have reconfirmed that
Eq. (13) holds for the four-funnel model. As shown in Table I,
we evaluated the values of λ3 and λ4 with the use of Eq. (15),
from which we see that Eq. (15) generally gives accurate
approximations of λi . This means that one merging process

TABLE I. The ith relaxation rates λi , relaxation times −1/λi ,
merging times τi , merging rates −1/τi , and the values of Eq. (15)
of the four-funnel model K . The differences between the second and
third rows are the lag times.

i 2 3 4

λi −0.089 −0.154 −0.235
−1/λi 11.29 6.49 4.34
τi 27.76 10.35 4.20
−1/τi −0.036 −0.0966 −0.238
Eq. (15) −0.078 −0.165 −0.227

occurring in the most probable path graph is effectively driven
by just one corresponding relaxation mode vi for i = 2, 3, 4
and further that these merging processes, as well as the
relaxation modes, are spatially separated and can be treated
to be decoupled from each other.

C. Degenerate λi cases

We have considered the four-funnel model with the random
connectivity between the states, as depicted in Fig. 1. Due
to the randomness, this model has nondegenerate eigenvalues
of λi . However, in particular cases, such as systems with
some symmetry, the eigenvalues λi can be degenerate. Here,
we extend our graph-based arguments to such degenerate λi

cases.
First, we introduce a degenerate model by modifying the

four-funnel model. To this end, recall that the spectral rep-
resentation of the transition rate matrix K of the four-funnel
model is given by

K = V �V −1, (16)

V = [v1, v2, v3, v4, . . . ], (17)

� = diag(λ1, λ2, λ3, λ4, . . . ). (18)

Now, we consider the degenerate matrix K ′ that is obtained
by changing the value of λ4 to the value of λ3 in K , whose
spectral representation is given by

K ′ = V �′V −1, (19)

�′ = diag(λ1, λ2, λ3, λ3, . . . ). (20)

The most probable path graphs of the transition probability
matrix T ′(τ ) = exp(τK ′) were examined, where we found the
same merging processes as depicted in Fig. 5. However, the
merging times τi were changed as shown in Table II. From
Table II, we see that the doubly degenerate eigenvalues of
λ3 = λ4 correspond to the resolved merging times τ3 > τ4,
which means that lag times, τi + 1/λi , from the relaxation
times −1/λi to the merging times τi are different between
i = 3 and 4 modes. As shown in Table II, the values of λi

of K ′ are estimated with the use of the correcting formula of
Eq. (15). Table II clearly shows that the degeneracy of λ3 = λ4

is revealed by this estimation.
Assuming here that the system had the same lag times

of i = 3 and 4, then τ3 = τ4 would hold and the two merg-
ing processes would simultaneously occur at τ = τ3: one
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TABLE II. The ith eigenvalues λi and the corresponding merging
times τi (i = 2, 3, 4) for the modified four-funnel model K ′ of
Eq. (19). K ′ has the degenerate eigenvalues of λ3 = λ4 = −0.154.
The lag times τi + 1/λi > 0 are different between i = 3 and 4
modes, although they are in the same eigenspace of λ = −0.154.
Similarly to Table I, the values of λi of K ′ with the use of the
correcting formula Eq. (15) were evaluated, where the degeneracy
of i = 3, 4 is recovered.

i 2 3 4

λi −0.089 −0.154 −0.154
−1/λi 11.29 6.49 6.49
τi 27.76 10.35 7.4
−1/τi −0.0360 −0.0966 −0.135
Eq. (15) −0.0473 −0.165 −0.165

was MB1(1 ⇔ 2) and MB2(14 ⇔ 15) −→MB{1,2}(2 ⇔ 1 ←
14 ← 15), which would induce the probability flow corre-
sponding to the eigenvectors v4, and the other was MB3(27 ⇔
28) and MB4(39 ⇔ 40) −→MB{3,4}(28 ⇔ 27 ← 39 ← 40),
which would induce the probability flow corresponding to v3.
Hence, we were able to extract the relaxation modes v3, v4 by
merging graph analysis without any change in this degenerate
lag-time case.

Finally, we consider a triply degenerate matrix K ′′ that is
obtained by changing the values of λ4 and λ3 to the value of
λ2 = −0.089 in K , whose transition rate matrix is given by

K ′′ = V �′′V −1, (21)

�′′ = diag(λ1, λ2, λ2, λ2, . . . ). (22)

The merging times are listed in Table III, which clearly
shows that the lag times, τi + 1/λi , are different among i = 2,
3, and 4 modes in this triply degenerate case, too.

At τ4 = 13.0, the most probable path from 39 changes
from 39 → 40 to 39 → 1, so that MB1 and MB4 merged into
MB{1,4}, which indicates the probability flow from MB4 to
MB1. The corresponding relaxation mode v′

4 = v2 + v3 − v4

does exist in the eigenspace of λ = −0.0089, as shown in
Fig. 8(a). At τ3 = 15.4, the most probable path from 27
changes from 27 → 28 to 27 → 1, so that MB3 and MB{1,4}
next merged into MB{{1,4},3}. Hence, the probability flow from

TABLE III. The ith eigenvalues λi and the corresponding merg-
ing times τi (i = 2, 3, 4) for the modified four-funnel model K ′′

of Eq. (21). K ′′ has the degenerate eigenvalues of λ2 = λ3 = λ4 =
−0.089. The lag times τi + 1/λi > 0 are different among these
modes, although they are in the same eigenspace of λ = −0.089.
Similarly to Tables I and II, we estimate the values of λi of K ′′ with
Eq. (15), where the degeneracy of i = 2, 3, 4 is almost recovered.

i 2 3 4

λi −0.089 −0.089 −0.089
−1/λi 11.29 11.29 11.29
τi 20.2 15.4 13.0
−1/τi −0.0769 −0.0649 −0.0495
Eq. (15) −0.099 −0.103 −0.111

FIG. 8. Eigenvectors of transition rate matrix K ′′ for the modi-
fied four-funnel model of Eq. (21): (a) v′

4, (b) v′
3, and (c) v′

2. In each
plot, the equilibrium, v1, is also plotted using circles connected with a
dashed line for comparison. Here, v′

k (k � 2) are scaled such that the
components satisfying (v′

k )i < 0 approximately agree with −(v1)i .

MB3 to MB{1,4} is expected. The corresponding relaxation
mode v′

3 = 1/2v2 + 1/2v3 + v4 exists in the eigenspace, as
shown in Fig. 8(b), from which we see that the excess proba-
bility stored in MB3 is transported into MB1 and MB4 by v′

3.
Lastly, at τ2 = 20.2, the most probable path from 14 changes
from 14 → 15 to 14 → 1, so that MB2 and MB{{1,4},3} merge
into MB{{{1,4},3},2}. Hence, the probability flow from MB2

to MB1, MB3, and MB4 is expected. The corresponding
relaxation mode is v′

2 = v2 − 2v3, as shown in Fig. 8(c). In
short, we have confirmed that in the case of triply degenerate
eigenvalues, the three merging processes at τ = τ4, τ3, τ2

exist due to the different lag times. These merging processes
correspond, respectively, to three linearly independent eigen-
vectors of v′

4, v′
3, and v′

2, in the same eigenspace of λ.
As shown in Table III, the values of λi are estimated for K ′′

with the use of the correcting formula of Eq. (15). Table III
clearly shows that the degeneracy of i = 2, 3, 4 is almost
reconstructed in the estimated λi values. Hence, in this triply
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degenerate case, each relaxation mode corresponds to each
merging process, which enables us to determine the values of
λ accurately with the use of Eq. (15).

Here, assuming again that the three lag times were the
same, then all MBs merged into MB{{{1,4},3},2} at a certain τ ,
where the most probable paths simultaneously change from
39 → 40 to 39 → 1, from 27 → 28 to 27 → 1, and from
14 → 15 to 14 → 1. In this case, too, we could extract the
three linearly independent eigenvectors of v′

4, v′
3, and v′

2, in
the eigenspace of λ, by resolving the accumulating merg-
ing into the above three separated mergings. Of course, we
might resolve the simultaneous merging into other separated
merging: e.g., MB1 and MB3 merged into MB{1,3}; MB{1,3}
and MB2 merged into MB{{1,3},2}; and MB{{1,3},2} and MB4

merged into MB{{{1,3},2},4} after that. In this separation, we
would obtain another set of linearly independent eigenvectors
of v′′

2, v′′
3, and v′′

4 in the same eigenspace of λ.
In summary, we have found the correspondences between

the merging processes and the eigenvectors in the case of the
eigenspace of λ with multiple degeneracies. A single merging
process corresponds to an eigenvector in the eigenspace of
λ. Generally, the lag times from the relaxation times −1/λi

to the merging times τi vary from eigenvector to eigenvector.
Thus, the quasidegenerate merging rates, −1/τi , are resolved.
If the lag times are equal, separated reroutings of the most
probable paths are postulated in the merging process, from
which we can extract the corresponding eigenvectors from
the eigenspace of λ. These eigenvectors carry the probability
flows induced by the postulated merging processes. Hence,
we can extract the eigenvalues and the eigenvectors that
correspond to the elemental merging processes, from any
degenerate systems, within the error of lag times. Further-
more, with the use of Eq. (15) we can extract the accurate
values of λi , which are free from the lag-time errors, from the
merging process data of degenerate, as well as nondegenerate,
λi systems.

VI. CONCLUSION

In this paper, we have considered the structural changes of
the most probable path graphs of T (τ ). The parameter τ is
a coarse-graining parameter in that the modes relaxing faster
than 1/τ in rate are neglected from T (τ ). As τ is increased,
the most probable path graphs are frequently reconnected,
where there exists a specific glass-transition time τg , which
divides τ into two qualitatively different regions.

For τ < τg , the members of the metabasins (i.e., the con-
nected graph components) remain almost unchanged, and
only the intra-metabasin local equilibria can be attained. We
have confirmed that not only for transition rate matrices K but
also for transition probability matrices T (τ ) the metabasins
are suitable bases both for coarse-graining and for renormal-

ization procedures in Ref. [43], since these procedures are not
sensitive to the values of τ when τ < τg .

On the other hand, for τ � τg , the inter-metabasin recon-
nections of attracting cycles, which lead to the merging of
metabasins, occur three times. For each value of τ at which
metabasins merge with each other, there exists an eigenvalue
around the rate of −1/τ , and the corresponding eigenvector
clearly shows that the relaxation process corresponds exactly
to the merging process of metabasins.

In conclusion, we have revealed that the relaxation prop-
erties can be extracted via analyzing structural changes of
the most probable path graphs of T (τ ). The advantages of
our graph-based method are as follows: (a) In our method,
metabasins are extracted visually directly from the most
probable path graphs. In contrast, in the other widely used
methods, such as the Perron cluster algorithm [27], some
processing of diagonalizations and linear superpositions is
necessary for extracting metabasins. (b) From the merging
of metabasins of the most probable path graphs at τi , we
can evaluate the slowest relaxation rates λi as about −1/τi

and the corresponding eigenvectors as the probability flows
between just merging metabasins. Furthermore, with the use
of Eq. (15), which corrects the lag times between −1/λi

and τi , one can evaluate the value of λi with high accuracy
from the merging process. (c) These method developed in this
paper are available for a wide range of kinetic systems with
degenerate, as well as nondegenerate, relaxation rates.

We remark finally that one can start the metabasin analysis
developed in this paper only with the information about the
most probable transitions i → j . The states i and the tran-
sition probability matrices T (τ ), required for this analysis,
can be estimated by various clustering methods both from
simulation datasets and from experimental datasets [20,27].
Therefore, even if a kinetic system was very complicated, it
would be relatively easily to extract the information about
the most probable transitions and thus the slowest relaxation
modes from the transition data via the metabasin analysis.
Hence, we hope that this simple graph-based analysis de-
veloped in this work will be applied to a wide range of
realistic kinetic systems for extracting the slowest relaxation
modes via experimentally or numerically accessible transition
probability matrices.
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