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Supplemental Material: Slowest kinetic modes revealed by metabasin renormalization

Teruaki Okushima, Tomoaki Niiyama, Kensuke S. Ikeda, Yasushi Shimizu

In this Supplemental Material, we will show that the renormalization procedure developed in the paper can be

applicable to the discrete-time kinetic equations, also known as (discrete-time) Markov state models [1], with small

modifications.

Suppose that the kinetic state is described by the distribution of probability, pi, for i = 1, 2, . . . , n, where n denotes

the number of states, the kinetic equations are given by

pi(t+ 1) =

nX

j=1

tijpj(t) + pi(t)
⇣
1�

nX

j=1

tji
⌘

for i = 1, 2, . . . , n, (1)

where pi(t) is the probability distribution of the system state i at discrete times t = 0, 1, 2, . . . , and tij is the

transition probability from state j to state i for j 6= i, otherwise tii = 0. With the transition probability matrix

T defined by (T )ij = tij + �ij(1 �
Pn

j0=1 tj0i), the equations can be expressed in a matrix form: p(t + 1) = Tp(t).
We assume the equilibrium, limt!1 p(t), to be a unique static state. Accordingly, the eigenvalues of T satisfy

1 = �0 > �1 > · · · > �n�1 > 0 [1]. The equilibrium p(1) coincides with the zeroth eigenvector of T , and the first,

second, . . . eigenvectors of T represent the slowest relaxation modes.

Metabasins (MBs) in transition probability matrices, are determined similarly with the use of monotonic sequences

[2, 3]. A sequence of states i1 ! i2 ! . . . is called monotonic if it consists only of most probable transitions. The

monotonic sequences with the same terminal state belong to the same MB.

Similarly to the transition rate matrix K, the columns and rows of T are rearranged in the MB ordering,

�(1, 1),�(1, 2), . . . ,�(2, 1),�(2, 2), . . . , and the resultant matrix is denoted by T�, where �(`, i) returns the number j
of state j that is the ith energy state in MB`. Then, we consider the block diagonal matrix diag(T1, . . . , T`, . . . , Tm)

to be the unperturbed matrix, where T` is given by

(T`)ij = t�(`,i),�(`,j) + �ij

nX̀

j0=1

�
1� t�(`,j0),�(`,i)

�
,

where n` is the size of MB`. Note that jth eigenvalues, �`,j , of T` satisfy 1 = �`,0 > �`,1 > · · · > �`,n`�1 > 0.

To consider the intra-MB relaxation modes, we form ⇤` = D�1
` T`D`, with the use of the diagonal matrix D` =

diag(
p
p`,0), where p`,0 is the local equilibrium in MB`. It is noteworthy that ⇤` is the symmetric matrix and can be

diagonalized with an orthogonal matrix S` =
⇥p

p`,0,v`,1, . . . ,v`,n`�1

⇤
, where v`,j is the jth eigenvectors of ⇤`.

To consider the inter-MB transitions, we form the symmetric matrix ⇤
0
= STD�1T�DS, with S = diag(S1, S2, . . . )

and D = diag(
p
peq), where peq is the equilibrium of T�. Moreover, to introduce the division of intra-MB relaxation

modes into slow and fast modes, we set a certain threshold �cut satisfying 1 > �cut > 0: the slow relaxation modes

are 1 > �`,j > �cut and the fast relaxation modes are �cut > �`,j > 0. We, then, reorder the columns and lows

of ⇤
0
in the slow-to-fast relaxation block order, and the resultant matrix is denoted by ⇤slow-fast. Note that ⇤slow,

defined by the first nslow ⇥ nslow submatrix with nslow denoting the number of unperturbed slow relaxation modes,

generally describes an approximate transitions between the slow modes. To obtain the accurate results, we need a

renormalized transition matrix ⇤
RG
slow. To this end, we use a Jacobi rotation ⇤slow-fast 7! ⇤

RG
slow-fast = GT

⇤slow-fastG
such that the resultant couplings between slow and fast modes, (⇤

RG
slow-fast)ij with i 6 nslow < j, are vanishing. Now,

the renormalized transition matrix ⇤
RG
slow is defined by the first nslow-by-nslow submatrix of ⇤

RG
slow-fast, which reproduces

the exact slowest relaxations of the kinetic equation (1).

Table I summarizes the di↵erences between the renormalization procedures for discrete-time and for continuous-time

kinetic equations, from which we clearly see that the renormalization procedure for discrete-time kinetic equations is

constructed almost in the same way as that for continuous-time kinetic equations developed in the paper.

TABLE I. Di↵erences between discrete-time and continuous-time renormalization procedures: The listed di↵erences are ab-

sorbed by the matrix ⇤
0
and the definitions of slow modes. In other words, all the procedures after specifying these are exactly

the same way between for the discrete-time equation and for the continuous-time equation.

Time Matrix to be normalized ⇤
0

Slow modes

Discrete time Transition probability matrix T STD�1T�DS 1 > �`,i > �cut

Continuous time Transition rate matrix K STD�1K�DS 0 > �`,i > �cut
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