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We present a novel method for computing finite-time Lyapunov exponents and vectors, via general-
izing a correction given by Goldhirsch, Sulem, and Orszag [Physica (Amsterdam) 27D, 311 (1987)] into
higher-order corrections. This method is a generalized LR method, which is, in contrast to the existing
methods, applicable to multidimensional systems with degenerate spectra. The efficiency and accuracy
is demonstrated by applying it to multidimensional dynamical systems. Without these corrections, we
could not accurately detect, as an example, the coexistence of qualitatively different Lyapunov
instabilities along a trajectory for a multidimensional oscillator system.
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the FTLE spectra are (quasi-)degenerate, which impede
us to accurately compute the FTLEs with the existing
numerical methods, the QR and the singular value de-

M�tf; ti� � M�tf; 0�M�ti; 0� , where M�t; 0� obeys the
linear variational equations of Eq. (1) with the initial
conditions M�0; 0� � I ( � the n� n identity matrix).
The spectrum of Lyapunov exponents (LEs) provides
quantitative characterization of a dynamical system. LEs
of a reference trajectory measure the exponential rates of
principal divergences of the initially neighboring trajec-
tories [1]. Motion with at least one positive LE has a
strong sensitivity to small perturbations of the initial
conditions and is said to be chaotic. In contrast, the
principal divergences in regular motion, such as quasi-
periodic motion, are at most linear in time, and then the
leading LE should be zero in this case. The LEs have been
studied both theoretically and experimentally in a wide
range of systems [2,3] to elucidate the connections to the
physical phenomena of importance, such as nonequilib-
rium relaxation and transports [4,5].

The existence of LEs is proved under a general con-
dition [6]. However, the convergence of LEs is found to be
quite slow (algebraically) in time for a generic dynamical
system [7], due to its nonhyperbolicity [8]. In a non-
hyperbolic system, chaotic and regular motions coexist
in the phase space, which introduces large variations in
local instability along a reference chaotic trajectory. The
variations are related to the alternations between quali-
tatively different motions, such as chaotic and quasiregu-
lar, laminar motions in two-dimensional systems [9] and
random and cluster motions in high-dimensional systems
[10]. These variations are quantified by finite-time
Lyapunov exponents (FTLEs), the exponential rates of
principal divergences during finite-time intervals. Recent
understandings of shadowability (i.e., computability of
chaotic systems) [11,12], the mixing process in two-
dimensional incompressible flow, entropy production in
an advection-diffusion equation, and dynamo phenomena
[13] have been widely developed with the essential use of
FTLEs and finite-time Lyapunov vectors (FTLVs).

For a nonhyperbolic system, there exist time intervals
where part of the FTLEs accumulate around zero. Hence
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composition (SVD) methods [7,14]. The QR methods,
based on the matrix factorization of QR decomposition
(QRD) [15], are effective and widely used algorithms for
computing the LEs [1,16–19]. However, for the FTLEs,
these methods introduce errors that decrease only alge-
braically in time [7]. Goldhirsch, Sulem, and Orszag have
derived a correction for the standard QR method [7,20].
This correction is rather effective for nondegenerate spec-
tra, but insufficient to accurately compute FTLEs with
(quasi-)degenerate spectra. On the other hand, the SVD
methods, based on the matrix factorization of SVD [15],
are accurate algorithms for computing FTLEs [7,14].
However, the SVD methods have a severe limitation of
being applicable only to continuous-time systems with
nondegenerate spectra [14].

In this Letter, by generalizing the correction given by
Goldhirsch et al. to higher-order corrections, we develop
a new, accurate method for computing FTLEs and
FTLVs, which is applicable even when the spectrum is
degenerate. We demonstrate the accuracy, efficiency, and
usefulness of our method, by applying it to multidimen-
sional dynamical systems.

Let us consider continuous- or discrete-time dynamical
systems in n-dimensional phase space x � �x1; x2; . . . ; xn�,
whose equations of motion are, respectively, given by

dxj�t�
dt

� fj�x�t�� or xj�t� � Fj�x�t� 1�� (1)

for j � 1; 2; . . . ; n. We write the solution of Eq. (1) start-
ing from x0 at t � 0 as x�t; x0�. The stability matrix from a
time ti to a later time tf along a reference trajectory
x�t; x0� is the n� n Jacobian matrix M�tf; ti� whose j-k
element is @xj�tf; x0�=@xk�ti; x0�. Hence an infinitesimal
perturbation v � �v1; v2; . . . ; vn� at t � ti is transformed
to M�tf; ti�v at t � tf. Note that M�tf; ti� has the relation
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FIG. 1. The finite-time errors for K � 1:5, �x�0�; y�0�� �
�1:1 ; 0�: (a) The errors in the QR method, j�QR2 �t; 0� �
�2�t; 0�j, are plotted against t. (The solid line is 10=t for eye
guidance.) The kth corrected errors in the smallest exponents
are plotted: (b) j��k�2 �t; 0� � �2�t; 0�j vs t for k � 0; 1; 2; 25;
(c) j��k�2 �t; 0� � �2�t; 0�j vs k for t � 1; 11; 15; 20.
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Now we introduce the FTLEs and the FTLVs from the
SVD [15] of the stability matrix

M�tf; ti� � U�tf; ti�D�tf; ti�V�tf; ti�
T

�
Xn
j�1

uj�tf; ti��j�tf; ti�vj�tf; ti�T; (2)

where U;V are orthogonal matrices U � �u1; u2; . . . ; un�,
V � �v1; v2; . . . ; vn� [21], andD is a diagonal matrixD �
diag��1; �2; . . . ; �n� [22]. The singular values �j are the
square roots of non-negative eigenvalues of the symmet-
ric matrix MTM. They are, without loss of generality,
assumed to be ordered as �1 	 �2 	 
 
 
 	 �n. From
Eq. (2), the jth FTLEs, FTLVs, and left FTLVs in the
time interval from ti to tf are given by �j�tf; ti� �
log�j�tf; ti�=�tf � ti�, vj�tf; ti�, and uj�tf; ti�, respectively.
The ordinary, i.e., infinite-time, LEs and Lyapunov vec-
tors are given by the tf ! 1 limits of FTLEs and FTLVs.

Now we develop a numerical method for computing
FTLEs and FTLVs. The first step of our method is the
procedure of the standard QR method [1,16], which is
based on the QRD of the stability matrix: M�t; 0� �
Q�t; 0�R�t; 0�, where upper triangular R�t; 0� with non-
negative diagonal elements and orthogonal Q�t; 0� are
evaluated as follows [1,16,23]. By dividing time into
intervals � (tk � k� for k � 1; 2; . . . ), M�t; 0� is repre-
sented as M�t; 0� � TnTn�1 
 
 
T1 for t � n�, with Tk �
M�tk; tk�1�. Then, with utilizing QRD repeatedly, Qk and
Rk (k � 1; 2; . . . ) are introduced as follows:

T1 � Q1R1; TkQk�1 � QkRk �k 	 2�: (3)

These matrices satisfy M�t; 0� � QnRnRn�1 
 
 
R1, and
thus R�t; 0� � RnRn�1 
 
 
R1. The standard QR method
evaluates the jth LE as limt!1

P
n
k�1�1=t� log�Rk�j;j.

We now introduce a normalized form of the sta-
bility matrix, which gives approximate values of the
FTLEs and the FTLVs: M � UedrVT , where U;V are
orthogonal, d is diagonal, and r is upper triangu-
lar with diagonal elements of unity. These matrices
are determined as follows: Since M�tf; ti� �
M�tf; 0�M�ti; 0�

�1 and M�tn; 0� � QnRnRn�1 
 
 
R1, the
stability matrix M�tf; ti� is represented as M�tf; ti� �
QfRfRf�1 
 
 
Ri1Q

T
i (ti � i�, tf � f�). Then, U and V

are chosen as U � Qf; V � Qi. The remaining matrices
d and r are given by dj;j � log�Ri1�j;j  log�Ri2�j;j 

 
 
  log�Rf�j;j and r � e�dRfRf�1 
 
 
Ri2Ri1, re-
spectively. In order to obviate the numeric overflow or
underflow, r is computed as r � rf�i 
 
 
 r2r1, where r1 �
e�d1Ri1, rk � e�dk1Rike

dk (k 	 2), and �dk�j;j �
log�Ri1�j;j  log�Ri2�j;j  
 
 
  log�Rik�j;j. Estimat-
ing U, d, and V are straightforward.

If all off-diagonal elements of r are negligibly small
compared to the diagonal elements ( � 1), then the jth
FTLE and (left) FTLV are given by dj;j=�tf � ti� and
�uj�vj, respectively. Therefore, we define �QRj �tf; ti� as
254101-2
dj;j=�tf � ti�. In general, however, r is far from diagonal,
and thus �QRj ; uj; vj are not accurate approximations of
FTLEs and FTLVs. Figure 1(a) shows errors in the small-
est exponents, j�QR2 �t; 0� � �2�t; 0�j, against t for the stan-
dard map [24]: y�t� � y�t� 1� � K sin�x�t� 1��, x�t� �
x�t� 1�  y�t�. The exact exponents �j are directly
computed by diagonalizing the symmetric matrix MTM
with high-precision computation to evade its round-
off error. The error decreases quite slowly as �1=t,
which clearly shows that �QRj is not a sufficiently accurate
approximation.

Now we present our novel method for FTLE(V)s,
by correcting the finite-time error in �QR. To this end,
we construct a sequence of refinementsU�k�, d�k�, r�k�, V�k�
(k � 0; 1; 2; . . . ) satisfying r�k� ! diagonal as k! 1,
with the normalization condition that M �
U�k�e

d�k�r�k�V
T
�k� for even k and M � U�k�r

T
�k�e

d�k�VT
�k� for

odd k. Here U�k�; V�k� are orthogonal, d�k� is diagonal,
and r�k� is an upper-triangular matrix with diagonal ele-
ments of unity. Starting fromU�0� � U, d�0� � d, r�0� � r,
254101-2
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FIG. 2. �1�t; ti� against t, ti < t < ti  1000, for an initial
condition [H�p�0�; q�0�� � 300]: (a) ti � 73 000 and (b) ti �
20 000. The thick and the thin lines are our corrected results
and the approximate results of the standard QR method,
respectively. The thick line in (c) is �1 for ti � 24 000. The
thin lines are the fitted lines in the early linear and in the latter
exponential stage, respectively. TL � 24 300 is the time at the
intersection of these fitted lines.
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V�0� � V, we generate the successors d�k�; r�k� (k 	 1) by

rT
�k�1� � Q�k�R�k� �QRD�;

r�k� � e�d�k�1�D�1
�k�R�k�ed�k�1� ;

d�k� � log�D�k��  d�k�1�; (4)

where D�k� is the diagonal matrix equal to the
diagonal part of R�k�. The matrices U�k�; V�k� are
given by U�k� � U�0�Q�2�Q�4� 
 
 
Q�2bk=2c�, V�k� �
V�0�Q�1�Q�3� 
 
 
Q�2b�k�1�=2c1�, where bxc denotes the
largest integer not greater than x. This procedure (4) is
intrinsically regarded as the diagonalization of the sym-
metric matrix MTM via the LR method [15], except for
including the normalization to overcome the large con-
dition number of the stability matrix. Here the matrices
ed�k�r�k� and rT

�k�e
d�k� correspond, respectively, to the upper-

and lower-triangular matrices, R and L, of the LR
method. As a result of the general property of the LR
method [15], this iterative procedure always converges to
the exact SVD exponentially, which enables us to accu-
rately obtain FTLEs and FTLVs.

UsingU�k�; V�k�; d�k�, we define the kth corrected FTLE
and (left) FTLVs as ��k�j �tf; ti� � d�k�j;j=�tf � ti� and the
jth column vector of �U�k��V�k�, respectively. Note that the
first corrected exponent ��1�j �t; 0� � �dj;j  logD�1�j;j�=t is
the same as the correction proposed by Goldhirsch et al.
for nondegenerate spectra systems in [7,20]. Namely, our
correcting procedure is a generalization of the correction
proposed by them.

Next, we numerically test our correcting procedure
using the standard map. The kth corrected errors
j��k�2 �t; 0� � �2�t; 0�j are plotted in Fig. 1(b) as a function
of t [24]. We can see that, for all t computed, the errors
rapidly decrease as k increases, with t-dependent conver-
gence rates. For example, the slowest convergence is
observed at t � 11. To see the detail of the convergences,
we plot the errors as a function of k in Fig. 1(c). There are
intervals of k in which the errors decrease exponentially,
up to precisions close to the floating number preci-
sion (16 digits). At t � 11, the initial step k0 at which
the interval starts is larger (k0 � 15) than that of t � 11
(k0 � 1), because the standard QR method fails to de-
scribe the sudden changes in directions of Lyapu-
nov vectors. This is the major reason for the slowest
convergence observed at t � 11 in Fig. 1(b). These obser-
vations show that the higher-order corrections (k 	 2) are
generally indispensable. In practice, the correcting pro-
cedure is required to be executed until the difference,
j��k�j �t; 0� � ��k�1�

j �t; 0�j, of one step correction (or the
magnitude of off-diagonal elements of r�k�;maxfr�k�i;j; i �

jg) converges to zero with the floating number precision,
for the best accuracy of FTLE computation.

The next example is the �2� 1�-degrees-of-freedom
oscillators system (� is a non-negative integer), whose
Hamiltonian is a !4-interaction model truncated in re-
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ciprocal space:

H �
X�
j���

�
1

2
pjp�j 

!j
2
qjq�j

�

�
4

X0
qj1qj2qj3qj4 ;

(5)

where all modes j � ��;�� 1; . . . ;� satisfy
the reality conditions qj � q��j; pj � p�

�j, !j ���������������
1 j2

p
, � is a nonlinearity parameter, and

P0
�P

�
j1;j2;j3;j4��� &j1j2j3j4;0. This model is a nonhy-

perbolic dynamical system, which has chaotic trajecto-
ries, along which motions change intermittently from
irregular to ordered, and vice versa [25]. Examples of
typical plots of singular values �1�t; ti� for ordered and
irregular motions [� � 2; � � �32 ��1] are, respec-
tively, the thick lines in Figs. 2(a) and 2(b). These figures
show that the local instability has a qualitative difference
that corresponds to the orders of motions: �1 increases
linearly in time, t� ti, for (a) ordered motions and ex-
ponentially for (b) irregular motions.

These singular values are computed by using our
method with the relation �j � exp��j�t� ti��. The accu-
racy is confirmed by comparing them to the result of
the high-precision diagonalization of MTM, as is done
in the standard map. The approximate �1 computed via
the standardQR method are plotted for comparison, with
the thin lines in Figs. 2(a) and 2(b). These figures show
254101-3
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that the standard QR method does not have enough accu-
racy both for (a) ordered motions to reproduce the quali-
tative change of�1 (theQR approximate�1 does not give
the original, linear increase and is much smaller than the
accurate result) and (b) irregular motions to describe the
quantitatively accurate change of log�1 (the approximate
log�1 is smaller by an approximately constant gap
compared to the accurate result). Therefore, we have
again confirmed that our corrections are necessary for
accurate computation of local instability in this multi-
dimensional case.

Because of the great accuracy of our method, life-
times of ordered motions are preciously determined as
follows. Figure 2(c) shows a typical plot of �1 that
changes from linear to exponential increase. The cross-
over time TL in Fig. 2(c) corresponds to the change from
an ordered to an irregular motion. Thus the lifetime of the
ordered motion is accurately given by TL. Note that our
corrections are necessary to obtain lifetimes of ordered
motions, because, without these corrections, the qualita-
tive changes, and thus the clear crossover times, generally
disappear.

In summary, we have developed a numerical algorithm
for computing accurate values of finite-time Lyapunov
exponents and vectors, by constructing a correcting
procedure to the standard QR method. This procedure is
a generalized LR method. As a result, the corrected
results exponentially converge to the exact Lyapunov
quantities for generic multidimensional dynamical sys-
tems including nonhyperbolic systems with (quasi-)de-
generate Lyapunov spectra. This method is easy to
implement [see Eqs. (3) and (4)] and very efficient, be-
cause of the exponential convergence, and because the
correcting procedure is called only when the exact
quantities are necessary. We have demonstrated the effi-
ciency of our method by applying it both to the standard
map and to a multidimensional oscillator system. In the
application to the oscillator system, alternations in quali-
tatively different local instabilities have been found along
a trajectory. From crossover times of local instabilities
that change from linear to exponential increases, life-
times of the associated ordered motions are determined
accurately.

We expect that this correcting procedure can be appli-
cable for other numerical methods, such as the symplectic
method [18,19], and that faster convergence may be ac-
complished by introducing shifts [15] into the correcting
process. We hope that these methods will help us to
develop understandings of generic multidimensional non-
hyperbolic chaotic systems.
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the manuscript, enlightening discussions, and continuous
encouragement. I thank A. Tanaka for fruitful, critical
comments, as well as T. Onishi for valuable comments on
the manuscript.
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